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Synopsis
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paper gives the historical development of these series in nearly chronological order under the headings: 
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1 The A, B, and C series: definitions, 
NOTATIONS, AND PREHISTORY, 1811-1887

We shall discuss the history of series expansions of the form

oo

Cjfj(x) , Co = 1 , -OO < X < oo ,
J=o

where g(x) is a given frequency function and f(x) = fo(x) is another frequency 
function chosen as a first approximation to g(x). The series is called the A series, 
when the /’s are continuous, and the B series when discontinuous. The terms A 
and B series were introduced by Charlier (1905b), who (1928) also introduced a 
C series in which log <7(3;) is represented by a polynomial of even degree. We shall 
mostly discuss the normal A series, also called the Gram-Charlier series, which 
is a linear combination of the normal density and its derivatives, and the Poisson 
B series, which is a linear combination of the Poisson frequency function and 
its differences; when it is clear from the context we leave out the qualifications 
normal and Poisson. The coefficients in all the series will be denoted by Cj, which 
thus takes on different values depending on the context.

It is supposed that g(x) is uniquely determined by its moments gr = ^[(a: — 
5)r], r = 0,1,... ,b being an arbitrary number, whose value usually is chosen as 
zero or E(x). The support of g(x) may be an interval on the real line or a set 
of consecutive integers. It is assumed that g(x) and its derivatives or differences 
tend to zero for |a?| —> 00.

The moments of f(x) are = E[ (x—b)r]. Similarly we define the “moments” 
z/rj of fj(x) as i/QO = I; ^oj — 0 for J 1, and

Urj
r = 1,2,... 
j = 0,1,... .

For the discontinuous case the integral is replaced by a sum. Other kinds of 
symmetric functions such as factorial moments, binomial moments and cumulants 
will later be introduced according to the usual definitions. In the following we 
usually leave out the limits of integration and summation when the whole range 
of x is involved.

In the proofs we are going to discuss, the authors tacitly assume that all 
moments are finite and that the moment generating function Af(i) = E(ext) 
exists.

We distinguish between expansions of sampling distributions and frequency 
functions.

The basic theory of the A series as an expansion of an arbitrary frequency 
function is due to Laplace (1811, art. V), a fact that has been overlooked until 
pointed out by Molina (1930). In his discussion of a diffusion problem, see Hald 
(1998, §17.8), Laplace writes the arbitrary initial density of the position of the 
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particle in question, in standardized measure, in the form

oo
g(x) — 7T_2 exp(—x2) Cj7v~ 5

l=o

which is obtained from the general solution for t = 0.
To simplify the notation we introduce the standardized normal distribution in 

the classical form

î9(æ) = 7T_2 eXp(—j;2) , _œ < x < QQ

and the corresponding Hermite polynomials H* (x) defined as

' (a?) = (—l)rz?(a?)Jf* (x), r = 0,1,... ,

where

. r(2j)
(æ) = j-(2æ)r_2j , r(fc) = r(r - 1) ■ • ■ (r - k + 1), (1.1)

1=0 J'

and
dx = 0 for s r ■> and = 2rr! for s = r.

Expanding (x + zs)J by the binomial theorem and carrying out the integration 
it follows that

7T_ 2 J(x + isy exp(—s2) ds = 2_JH* (x),

which leads to
00

g(æ) = z9(x) 2~JcJT/'*(æ). (1.2)
J=o

Using integration by parts Laplace proves the orthogonality of the Hermite poly
nomials, and using this property he finds the coefficients

cj = Ji y H*(x)g(x)dx = jE[H](x)], j = 0,1... , (1.3)

by which the expansion is fully determined.
The A series as an expansion of a sampling distribution goes back to the 

extension of the central limit theorem proved by Laplace, Poisson and Bienaymé, 
see Hald (2000a). In a remarkable paper by Bienaymé (1852) he first introduces 
the characteristic function ■ø(i) = E(eltx} as the generating function for the 
moments /ir = E(xr\ whereafter he changes to the exponential form exp[ln-ø(t)] 
because this is more convenient for carrying out the integrations involved by 



MfM 49 On the History of Series Expansions of Frequency Functions 9

using the inversion formula. Expanding ln-ø(t) in a power series he finds the 
coefficients of the first four powers of {it) as

Ml > M2 _ Mi i Hz ~ ^M2Mi + 2//1 » M4 — ^H3Hi ~ 3//2 + 12//2M1 ~ ^Mi •

The following coefficients are more complicated and he does not give a formula 
for the general case. Since In -ø(t) is the cumulant generating function Bienaymé’s 
coefficients equal the first four cumulants tti,... , k4. With this notation we shall 
rewrite the Poisson-Bienaymé extended central limit theorem for the univariate 
case.

Let sn — Xi + ... + xn be the sum of n independent random variables with 
cumulants Kr(%i), i = 1,... , n, so that

n
Kr(Sn) = Kr(Xi) = HKr , r = 1,2,.. . .

i=l

Introducing the standardized variable

t = (sn- nKi)(2nK2) 2 ,

and the standardized cumulants

the density of sn may be written as the A series

p(sn) = (2n«2) * $(t)

73#5*(C . 1

5! n3/2 6!
(4 + 10—+

n ) (1.4)

Actually, Bienaymé discusses the multivariate version of the extended cen
tral limit theorem so his result is a multivariate A series. He works out the 
coefficients but does not give the final form of the polynomials. However, the 
univariate expansion follows easily from Bienaymé’s result, as shown by Meyer 
(1874, Appendix II).

Laplace and his followers derived the asymptotic expansion above to get an 
approximation to the sampling distribution of the arithmetic mean and the (re
gression) coefficients in the linear model, that is, sn is a statistic calculated from 
a known number of observations. However, the series took on a new significance 
when Hagen (1837) and Bessel (1838) formulated the hypothesis of elementary 
errors, saying that an observation may be considered as the sum of a large num
ber of independent elementary errors stemming from different sources and with 
different unknown distributions. Hence, sn is interpreted as an observation and 
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p(sn) as the corresponding frequency function. A difficulty with this interpreta
tion is that we do not know the measuring process (or other processes considered) 
in such detail that we can specify the number of elementary errors making up 
an observation, so it is only the form of p(sn) that is known. Hagen and Bessel 
therefore used the expansion only as an argument for considering the normal 
distribution as a good approximation to empirical error distributions.

Let sn = s, say, be an observation and let us introduce the cumulants of s as 
parameters in the expansion of p(s). It is easy to see that p(s) becomes equal 
to (1-4) for n — 1. Hence, the expansion of the sampling distribution is a series 
with coefficients tending to zero for n —> oc, whereas the terms of the expansion 
of the frequency function all are finite.

An alternative proof of (1.4) is due to Chebyshev (1887). Part of the proof 
is based on his (1859) approximation to a square-integrable function F(x) by a 
linear combination of orthogonal polynomials Scjhj(x). Choosing the normal 
distribution as weight function,

'dk(x) = (Zc/tt)1/2 exp(-fcx2), hj(x) = k^2Hj (xy/fc), fc > 0,

and minimizing the expected value of the squared residuals he gets
OC

F(x) = kj/2CjH^x\/k), (1.5)
J=O

(1-6)

His (1887) proof is based on a new method, the method of moments. He begins 
by quoting an auxiliary theorem, proved in a previous paper: If the first 2m 
moments of an integrable non-negative function p(y) equal the first 2m moments 
of î?fc(a?) then

/ p(y) dy - #k(y)dy < s(m, v), (1-7)

where e(m,f) for any value of v tends to zero for m tending to infinity. Hence, 
if the infinitely many moments of p(y) equal the moments of 'dfc(y) then p(y) =

We shall sketch Chebyshev’s proof of the central limit theorem. A detailed 
discussion of the proof with amendments due to Markov is given by Uspensky 
(1937, Appendix II); see also Maistrov (1974, pp. 202-208) for some comments.

Chebyshev derives the distribution of y = (aq + ... + aq^n-1'2, E(xi) — 0, 
under the assumption that the moment generating functions for the indepen
dent x’s exist. The moment generating function My(t) equals the product of 
the moment generating functions for aqn-1'2 , i = 1,... ,n. Taking logarithms 
Chebyshev obtains the relation

oo oc

In Afy(i) = krtr/ r\ = Rrtr/\r\ rSr^2>>~1],
r=2 r=2 

(1-8)
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where kr is the rth cumulant for y and nr the average of the n cumulants of 
order r for the x's. For n —* oo it follows from (1.8) that

OO

1 + ftrtr/r\ = exp(«2^2/2).
r=2

The right side is the moment generating function for a normally distributed 
variable with zero mean and variance «2- Hence, for n —> oo the moments of y 
equal the moments of a normal distribution, and it then follows from (1.7) that 
the limit distribution of y is normal.

At the end of Chebyshev’s paper he briefly states that the above result gives 
the main term of a series expansion that may be obtained by means of the method 
given in his 1859 paper. Without proof he states a theorem that implies (1.4). 
Following his hints we shall construct a proof.

To simplify the notation we standardize the afls by setting the variances equal 
to 1/2 so that the density of y for n —> oo equals t?(t/). From (1.8) we then get

Afy(t) = exp(t2/4) exp
OO
^krtr/[r\n^~l]

_r=3
(1-9)

Since
exp(t2/4) = / eyt$(y)dy,

it is natural to write p(y) as a product fi(y}F(y), and using (1.5) for k = 1 we 
get

OO

(1-10) 
j=o

which is of the same form as (1.4) for y = snn~^2 and «2 = 1/2. To prove that 
the coefficients are the same we derive the moment generating function of the 
right side of (1.10) using that

{ eytd^\y) dy = (—t)J exp(£2/4)

which may be proved by integration by parts. We then get

Afy(t) = exp(i2/4) ^2 cji-7 .
J=o

Comparing with (1.9) it follows that co — 1, ci = C2 = 0, and 

OO

1 + 2) cj^ — exp
J=3

OO

J=3
(1-11)
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which is the generating function for the c’s in terms of the cumulants. It is easy 
to calculate c3,... , c6 and to check that (1.10) equals (1.4). However, Chebyshev 
does not do so, nor does he refer to Poisson and Bienaymé, so perhaps for these 
reasons this part of his paper was overlooked.

Gnedenko and Kolmogorov’s (1954, pp. 191-196) exposition of Chebyshev’s 
proof is misleading. They use characteristic functions and the inversion theorem 
to prove (1.4) but this method of proof is due to Poisson and Bienaymé, not to 
Chebyshev. Moreover, they write that “it is natural to collect terms of the same 
order in n. This then leads to Chebyshev’s expansion”, but Chebyshev did not 
do so, this result is due to Edgeworth (1905).

Until about 1870 the applications of statistical theory were mainly based on 
the binomial and normal distributions. However, the increasing wealth of data 
in many fields made it clear that the two classical distributions did not suffice for 
describing the variations encountered. From about 1870 to 1930 many attempts 
were made to construct systems of distributions that better fitted the variations 
of observations taken under the same essential conditions and thus considered as 
homogeneous.

The first of these systems modifies the normal, binomial and Poisson distribu
tions by taking each of these as the main term of a series expansion, an idea that 
occurred indepently to several “statisticians.” The many authors who worked on 
this problem naturally used different notations and methods of proof. We shall 
in some degree rewrite their contributions in a uniform notation.

In the discussion of the series 'Ecjfj(x) there are three problems involved: 
(1) the choice of /o(z), (2) the relation of //a?), j 1, to /o(æ), and (3) the 
determination of Cj.

The c’s may be expressed in terms of the moments by solving the linear equa
tions

oo

Hr Cj l^rj , T — 1,2,.... (1.12)
j=0

This fundamental formula is valid for both continuous and discontinuous distri
butions. The solution is commonly simplified by choosing the /’s such that the 
matrix {z/rj} is lower triangular, which means that Cj becomes a linear combina
tion of /ii,... , Hj-

Another approach consists in choosing the /’s as orthogonal with respect to 
the weight function l//0(x) and using the method of least squares, which gives

cj = j[fAx)/fo(x)]g(x)dx / J [ffa)/f0(x)]dx . (1.13)

If fj(x) — fo(x)PjÇx), where Pj(P) is a polynomial of degree j, then Cj becomes 
proportional to which is a linear combination of the first j moments
of g(x). Hence, this special case leads to the same result as the special case of 
(1-12).
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For an appropriate choice of the f's the first few terms of the series will often 
give a good approximation to g(x). However, the partial sum

m
9m(x) , 771=1,2,...,

j=o

will not necessarily be a frequency function, <7m(x') may for example take on 
negative values.

Authors beginning their investigations of frequency functions by deriving the 
normal A series naturally remark that the extension of the central limit theorem 
follows by interpreting the variable in question as a sum of n independent random 
variables.

The French and German authors express the normal density in the form i9(a?), 
whereas the Danish, British and Swedish authors after Thiele (1889, p. 26) and 
Pearson (1894) use

0(x) = (2-7r)_2 exp(—x2/2) ,

and define the corresponding Hermite polynomials Hr(x) as

0(r)(z) = , r = 0,1,... ,

where

(1.14) 
J=o

and
/ Hr[x')Hs(x>)(t)(x') dx = 0 for s =|= r , and = r! for s — r .

Turning to the statistical applications of the series it is clear that only a finite 
number of terms is necessary for describing an empirical distribution consisting 
of m relative frequencies. We assume that a sample of n observations from the 
population with frequency function g(x) is distributed on the values Xi,... ,xm, 
m < n, where the x's are consecutive integers in the discontinuous case and 
midpoints of class-intervals of unit length in the continuous case. The relative 
frequency of Xi is denoted by i = 1,... ,m, = 1, and the empirical
moments by mr, r — 0,1,... . In the continuous case mr is a consistent estimate 
of the corresponding moment of the grouped theoretical distribution, so to obtain 
an estimate of gr a correction for grouping is needed. Sheppard (1898) derived 
the main term of the correction as a function of the length of the class-interval, 
and independently Bruns (1906a, pp. 174-190) gave the complete solution taking 
both the position and the length of the class-interval into account, see Hald 
(2001). The estimate of Cj is obtained by replacing pr by the corrected value of 
mr. However, many authors only remarked that small class-intervals should be 
used.
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In the following we shall sketch the historical development in chronological 
order under the headings: The Danish. German, British and Swedish schools. 
We limit the exposition to the univariate case since no new principles are involved 
in the extension to multivariate distributions.

We shall not discuss the convergence and asymptotic properties of the series; 
this has been done by many authors, see Cramér (1928, 1937) and Boas (1949a, 
1949b) for results and further references.

The present paper is a continuation, with some overlapping and amendments, 
of Hald (2000a).

2 The Danish school

Oppermann and Thiele on the normal A series, 1873.

The geodesist G. K. C. Zachariae (1835-1907) gave in his textbook on the 
method of least squares (1871, pp. 71 92) an account of Bessel’s hypothesis of 
elementary errors and Bessel’s proof of (1.4) for symmetric distributions of the 
elementary errors.

L. H. F. Oppermann (1817 1883), Professor of German and besides working 
as an actuary, suggested to multiply the normal density function by a power 
series to obtain a system of skew distributions, see Gram (1879, p. 94).

T. N. Thiele (1838-1910), at the time working as an actuary, later becoming 
Professor of astronomy, followed this suggestion by presenting (1873) the first 
(after Laplace) version of the A series

oo

g(x) = Cj-D-7 [exp(-7ræ2)], D = d/dx ,
j=o

OO

— exp(—7ur2) CjTj(x), (2.1)
1=0

where
Tj(x) = Ç—iyn^^Hj^Xx/ïr).

Gram’s orthogonalization of the linear model, 1879, 1883.

J. P. Gram (1850-1916), an actuary working together with Thiele, considered 
the A series as a special case of the linear model. Beginning with a model with m 
independent variables he writes the adjusted value of y — (yi,... , yny in three 
ways

) — GniTi T • • • T

= y™ + (j/<2^ - ÿ1)) + ... + - y^-^) (2.2)
= ci/ii + ... T cmhm ,

where (aq,... , a?m) are linearly independent n-dimensional vectors, m n, the 
b's are the least squares regression coefficients, and (/ii,... , hm) are orthogonal 
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n-dimensional vectors, hr being a linear combination of aq,... ,xr. He uses the 
orthogonality to prove that

Cj h j'y / h jhj , j 1,2,...,

so Cj does not depend on the number of terms in the model in contradistinction 
to bmj •

Since

) y^ ) — T • • • T dmm^m ; Hl — 1,2,... , Tl ,

say, the problem is to prove the orthogonality of the successive differences and 
to determine the coefficients of the linear combination.

Gram’s algebraic proof is discussed by Hald (1998, §25.4). Setting h\ = Xi he 
finds 

Ûlr

Xr

r = 2,3,..., (2.3)

where ars — x'rxs and Ar} denotes the cofactor of ars in the determinant = 
|ars| of the normal equations. The residual sum of squares equals

in
Rm = (y- yÇm)Y(y - y^m)) = y'y-^2 crh'rhr ■

r=l

To explain the orthogonality in geometrical terms we note that y(m) is the 
projection of y on the space spanned by (aq,... , xm) so that the residual y — y(™> 
is perpendicular to each of these vectors, that is,

xj-fø-ÿ<m)) = 0, r=l,...,m.

u,ml - ÿ”"-1’ = (ÿ - ÿ'”-1*) -(y- 

it follows that

4(ÿ<’n)-ÿ<™-1))=0, r = l,...,m-l,

from which the orthogonality of the successive differences follows as each diffe
rence before the last one is a linear combination of aq,... ,xr for r < m.

Gram’s decomposition of y(™> expresses the fact that the explanatory variable 
Xi leads to the adjusted value y^\ the two explanatory variables (aq,aq) lead to 
y(2> so the net effect of taking X2 into account is y^ — y^\ which is orthogonal 
to y^\ and so on.
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Gram assumes that var (?/j) = cr2/wi, where Wj > 0 is a known number. This 
means that the sums of squares and products in the formulas above should be 
read as, for example, Y,xriyiWi instead of y,xriyi.

Gram considers the special case of (2.2) in which the components of the vectors 
involved are functions of an independent variable, t say, so that the true value of 
y(t) is represented by a linear combination of aq(t),... , £m(t). Generalizing this 
set-up he seeks a representation of a given square-integrable function y(t) as an 
infinite series

oo oc

~ ^brxr(t) = ^crhr(t),
r=l r=l

where the æ(£)’s are linearly independent known functions and the coefficients 
are to be determined by the method of least squares using the known function 
w(t) > 0 as weight. The function hr(t) is determined from (2.3) with

/ xr{t)xs{t)w(t') dt

so that

cr /zr(t)î/(t)w(t) dt/ / hr(t)w(t) dt

and the residual sum of squares after m terms equals

h^(t)w(t) dt.

Gram’s orthogonal A series, 1879, 1883.

Gram applies the method above to get an expansion of a continuous frequency 
function by setting Xj = f(x)xi so that

OC oc

g(x) = /(rr) ^bjX3 = f^^cjPjÇx), (2.4)
j=0 j=0

where {Pj(a?)} are orthogonal polynomials determined from (2.3) by means of

(r,s) = 0,1,... .

In particular, Gram studies this series for w(rr) = 1 and w(x) — 1//(a;). 
In the following we shall only discuss the latter case for which

xr+sf(x) dx = vr+s ,
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SO that Pq(x) = 1,

=

F0 Fi
Fl F2 ^+1

F2.7-1

(2-5)
Z/j-i Z/j

1 X

(2.6)

(2.7)

This is Gram’s fundamental result for a series for which fj(x) = f(x)Pj(x) and 
w(x) = 1/ f(x). Since Pj(x) is a polynomial of degree j it follows that c? is a 
linear combination of the moments of g(x) of order 1 to j. Hence, the method of 
least squares with 1//(a?) as weight leads to the method of moments.

As special cases Gram (1879) chooses f(x) as the uniform distribution over a 
finite interval (pp. 45-48), the gamma distribution (pp. 60-66), and the normal 
distribution (pp. 67-72), the corresponding polynomials being related to the 
Legendre, Laguerre, and Hermite polynomials. His main results are reproduced 
in the German version (1883) of his paper. From the moments of the three 
distributions Gram calculates Fi(rr), p2(x), Ps(x) by (2.5) and by induction 
he finds the general formulas. In each case he checks the orthogonality using 
integration by parts.

The series based on the uniform distribution has been discussed by Hald (1998, 
pp. 544-545). Here we relate Gram’s results with the normal and the gamma 
distributions as leading terms.

Gram sets f(x) — 'd(rr) and proves that

$(x)Pj(x) = = ?9(a;)(—l)Jl/*(a:),

which leads to the A series
oo

g{x) = 7?(æ) 22(-1)jCjH*(a?) (2.8)
j=o

with

(2.9)
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according to (2.7) and (1.1).
For the gamma distribution

/(r) = xQ”1e_/3æ/30/r(o), o>0,ß>0,z>0, (2.10)

Gram proves that

and carrying out the differentiation by means of Leibniz’s formula he obtains

= + 1 = 0,1  (2.11)

After having proved the orthogonality of these polynomials he gets
oc

= /(a?) ^CjF/a?),

j=o
where

= + 1 = 0'1-"" <2-12)

Gram remarks that it is often useful to replace x in the series (2.4) by a(x+ß), 
for example in the normal A series (2.8). It is then possible to choose a and ß 
such that two of the coefficients in the series disappear. It is easy to see that 
ci = c<2 = 0 if a and ß are chosen such that the first two moments of f and g are 
equal.

In accordance with his general principle Gram maintains that by fitting a 
partial sum of the series to an empirical distribution the method of least squares 
should be used to determine a and ß. This leads, however, to complications 
because the model no longer is linear in the parameters (unless f is a constant) 
so the solution has to be obtained by iteration. As a first approximation a and 
ß are estimated by means of the first two sample moments, and these estimates 
may be improved by taking the third moments into regard. Gram recommends 
to use the first or second approximation as if they were the true values of a and 
ß and then proceed accordingly to estimate the c’s.

As an example (1879, pp. 105-107) Gram fits a gamma distribution to the 
distribution of the marriage age for hitherto unmarried men during the observa
tion period 1855-1869. Taking the origin at 17.5 years of age he estimates the 
parameters in the gamma distribution (2.10) by means of the first two sample 
moments about the origin, mi and m2 say, by solving the equations

a = ßmi and a + 1 = ßm-z/mi .
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He observes that the fit is not quite satisfactory but does not go on to find the 
following terms of the series.

This example seems to be the first formulation and application of the gamma 
distribution.

It is clear that an orthogonal B series, analogous to the A series, may be 
constructed by Gram’s method, using sums instead of integrals. However, Gram 
discusses only the case for f(x) constant for which he develops an arbitrary func
tion g(P), defined on a finite number of equidistant points, in terms of orthogonal 
polynomials. He points out that a considerable simplification is obtained by using 
factorials instead of powers of x.

As an example he first considers the orthogonal A series for an arbitrary con- 
tinuus function defined on a finite interval which he normalizes to [0,1]. For 
f(x) = 1 he gets g(x} — Y>CjPj(x), where

For the discrete case he assumes that x = 0,1,... ,n— 1 and obtains the expansion 
of g(x) by replacing xk in Pj(x) by x^/(n — l/fc\ see Hald (1998, pp. 544- 
547) for the proof. He uses this result as a polynomial regression, not as a 
representation of a frequency function.
Thiele’s representation of the A series by means of the cumulants, 
1889, 1899, 1903.

Thiele (1889, pp. 26 28) improves Gram’s proof by introducing </>(#) instead of 
$(x), by using the orthogonality directly instead of the method of least squares 
for finding c?, and by introducing the cumulants instead of the moments. He 
writes the series as

Multiplying by Hr(x), integrating, and using the orthogonality of the H's he 
finds cr = F?[Hr(o:)], which gives cr in terms of the moments by replacing xr~2^ 
by gr-2j in (1-14). By means of his formula for the moments in terms of the 
cumulants he finds Ci,... , as functions of the cumulants, and using the recur
sion formula for the Hermite polynomials he derives a recursion formula for the _ 1
c’s. Replacing x by the standardized variable u = (x — aci)k2 2 the final form of 
the series becomes

g{x) = k2 2</>(u)[1 +7!H3(u)/3! + 72H4(w)/4!+
73H5(u)/5! + (74 + 107i)H6(u)/6! + ...], (2.13)
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where
7r = Kr+2/K2 , r = 1,2,... ,

see (1889, p. 28; 1903, p. 35).
Ten years later Thiele (1899; 1903, p. 24) defined the relation between the 

cumulants and the moments by equating the cumulant generating function to 
the logarithm of the moment generating function, that is,

oo
/j\ = In / 

J=1 J
extg(x) dx — In

oo \

1 + i

from which he (1899), without giving the proof, finds 

(2.14)

where j = aa + b/3 + ... + dö and r = a + b+ ... + d, and

j! 4-' 1 ' ’ ^al \a\) b'. Æ \ S'J J g 1. (2.16)

He (1899) also derives the symbolic form of the A series as

g(x) = exp (—ac3D3/3! + k4£>4/4! - ... )/(x) , D = d/dx, (2-17)

where /(t) denotes a density with mean «q and variance ^2, see Hald (2000a).
To evaluate the right side of (2.14) Thiele (1903, p. 34), using integration by 

parts, finds

(| =(-()■>

= (—t)J exp (git + <T2t2/2).

Inserting the series for g(x) and carrying out the integrations he obtains

OO oo

Kjt3/j\ = gt + cr2t2/2 + In Cjt31g\.
j=i j=o

Setting g = Ki and a2 = «2 the generating function for the coefficients in the
series becomes

(2-18)
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Independently, Thiele has thus proved Chebyshev’s formula (1.11) for n = 1. 
Expanding the right side in a power series and equating coefficients the c’s are 
found. Thiele derives the coefficients up to eg and points out that (2.18) is of the 
same form as (2.14) so that the relation between the c’s and the «’s is analogous 
to the one between the /r’s and the «’s, but he does not present the explicit 
solution. However, this is readily found from (2.15), which shows that

cj = _L (^_\a £ ( >o
j\ b\\ß\J ’ J = (2-19)

where j — aa + bß + ... + dö and r = a + b+... + d. Hence, Cj is a homogeneous 
function of the subscripts. As an example we have

£io 
ÏÔ!

^10
10! '

Thiele considered the condensation of the information in a sample by means 
of a few symmetric functions as one of the main problems in statistics, but 
which kind of symmetric function should one choose? He discarded the moments 
compared with the cumulants and looked for an interpretation of these. For a 
continuous distribution he found this in the A series for which he points out 
that Ai characterizes the skewness and A2 the peakedness of the distribution. 
He (1903, pp. 49-50) concludes that the coefficients of the A series are to be 
preferred to the cumulants.

I11 applications he recommends to use the partial sum of the A series with only 
the first five cumulants as parameters because of the large sanpling error of the 
following cumulants. He (1889, pp. 62-64) derives the variance of the first four 
sample cumulants and an approximation for the followings and uses this result 
to find the corresponding confidence limits.

He remarks that the length of the class-interval should be at most one-fourth 
of the standard deviation to reduce the effect of grouping.

Hence, the theory and application of the A series are fully discussed in the 
works of Thiele and Gram.

Thiele’s orthogonal B series based on the symmetric binomial, 1889.

Thiele (1889, pp. 9-13; 1903, p. 21) also introduced a B series based on the 
symmetric binomial and its differences. His exposition implies that the functions 
{fj (a?)} are orthogonal with respect to the weight function 1/fo(x) so

y /r(æ)A(^)/o
dx =

0 for s =|= r 
pr for s = r .

The method of least squares with l/fo(x) as weight gives

Cj = Pj ^[fj^/fo^x)], 
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which is a generalization of Gram’s formula (2.7).
To describe an unnormed frequency function g(x), x — 0,1,... , m, Sg(a?) = n 

Thiele uses the binomial coefficient

x = 0,1,... ,m , and ßrn(x) — 0 otherwise, 

as leading term and writes the series as

g(x) = coßm(x) + ciV/3m_i(rr) + ... + cmVmß0(x), m=l,2,..., (2.20) 

where V/?m(rr) = ßm(x) ~ ßm(x — 1) and T>g(x) = 2mCo- By not norming g(x) to 
unity Thiele obtains that the functions involved take on integer values only. 
Thiele indicates that the functions

a? = 0,1,... m
m,

are orthogonal with respect to l/./o(^), but leaves the proof to the reader. He 
tabulates the matrices {fj(x)} for m = 1,... ,16 to make the calculations of 
the coefficients and g(x) easy, the orthogonality of the tabular values is obvious. 
More details and a proof of the orthogonality are given by Hald (2000b).
Thiele’s C series, 1897, 1903.

As a third possibility for representing a frequency function by a series Thiele 
(1897. pp. 14-15; 1903, p. 16) proposes to use polynomial interpolation on the 
logarithm of the density, which leads to the C series

2m

In p (rr ) = cja?-7 , C2m < 0 , m = l,2,— oc < æ < oo . (2.21)
j=o

Thiele’s three examples, 1889, 1897, 1903.

Regarding applications of the three series Thiele (1889, p. 9) writes: “The 
exact representation of an empirical frequency function with m different results 
will of course require a series with m terms, but for an approximate representation 
it is important that the series has been chosen and ordered in such a way that the 
coefficient of each term can be calculated separately, and that the first terms of 
the series immediately give the essential characteristics of the function, whereas 
the later terms more and more lose importance and at last only regard trifles with 
importance only for a completely detailed representation of the given empirical 
distribution.”

To demonstrate the applications he fits the three series to the same data, viz. 
500 observations from a game of patience, and obtains nearly the same goodness 
of fit, see Table 1. He judges the goodness of fit by looking at the differences 
between the observed and calculated frequencies. He does not comment on the 
fact that the A series leads to negative frequencies for x = 5 and 6.
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Table 1. Thiele’s fitting of the A, B. and C series to an observed distribution

No. of

points Observed A series

Calculated

B series C series

4 0 0.0

5 0 -0.1

6 0 -0.3

7 3 1.6 1 0.3

8 7 12.3 11 7.1

9 35 39.6 40 39.2

10 101 78.2 82 85.9

11 89 104.1 103 105,4

12 94 97.7 92 93.4

13 70 69.4 70 70.5

14 46 42.8 48 48.5

15 30 26.7 26 29.8

16 15 16.0 13 14.5

17 4 8.0 8 4.6

18 5 3.0 4 0.7

19 1 0.8 1 0.0

20 0 0.2

21 0 0.0

Total 500 500.0 499 499.9

Sources:
Observed: Thiele (1889, p. 12; 1897, p. 12; 1903, p. 13)
A series: Thiele (1903, pp. 50-51). u = (x — 11.86)/2.0408.
g5(x) = 2^0811 + 0.09233^3(u) + 0.009356K4(w) - 0.006344H5(u)} .
B series: Thiele (1889, p. 12). fo(x) = ßi2(z).
55(a;) =0.1221/o(3:)+0.278/i(a;)+0.600/2(æ)+0.216/3(a;)+0.278/4(Æ)-0.318/5(æ), 

a? = 0,1,... ,12. No. of points = x + 7.
C series: Thiele (1897, p. 12; 1903, pp. 13-14).
logp4(z) = 2.0228 + 0.0030(2? - 11) - 0.06885(2: - ll)2

+0.01515(2? - ll)3 - 0.001678(2: - il)4 .

Thiele introduced the B series to describe discontinuous distributions and the
A and C series for the continuous case. Nevertheless he used all three series
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for analysing the same sample from a discrete population. He did not make 
a direct comparison of the three series as we have done in Table 1, which we 
have included to illustrate the following problem: If an empirical distribution is 
described equally well by several different models, which model should be chosen 
as the “best”?

In his discussion of this problem for continuous distributions Thiele (1903, 
p. 22) writes: “[...] that we certainly possess good instruments by means of 
which we can even in more than one form hud general series adapted for the 
representation of laws of errors.[...] If anything, we have too many forms and too 
few means of estimating their value correctly. [...] We ask in vain for a fixed rule, 
by which we can select the most important and trustworthy forms with limited 
numbers of constants, to be used in predictions.”

Thiele states explicitly that among the many possible forms he prefers the 
four- or five-parameter A series, presumably because of its flexibility, its mathe
matical and computational simplicity, and the simple interpretation of the four 
parameters for describing the frequency curve. With their actuarial background 
Thiele and Gram looked at the problem as one of graduation, and they abstained 
from speculations about the genesis of the model.

3 The German school

Fechner’s Kollektivmasslehre, and the Fechner distribution, 1897.

The background for the German school is the posthumously published Kollek- 
tivmasslehre (1897) by G. T. Fcchner (1801 1887), physicist and psychologist, 
co-author of the Weber-Fechner law and founder of the discipline psychophysics 
(experimental psychology), see Stigler (1986, pp. 242 254) on Fechner’s inultifac- 
tor experiments on the stimulus-sensation relation and their statistical analysis 
by the method of quantal response, and Heidelberger (1987) on Fechner’s inde
terminism and the Kollektivmasslehre.

After Fechner’s death the incomplete manuscript to his book was edited and 
completed by G. F. Lipps (1865-1931), philosopher, psychologist and mathemati
cian. Many of Fechner’s propositions are based on empirical investigations, for 
example by means of random numbers from Saxon lotteries, and Lipps provides 
the corresponding mathematical proofs and also supplementary empirical data 
and analyses. Lipps’s contributions are so essential that he ought to have figured 
as co-author of the book.

Fechner (1897, p. 3) defines a collective as “an object consisting of an inde
finite number of randomly varying specimens that belong to the same species 
or genus.” A collective is described by means of a frequency function so that 
“Kollektivmasslehre” in modern terminology becomes the theory of frequency 
functions. Fechner observes that most frequency functions encountered outside 
the physical sciences are asymmetric and he aims at supplementing the classical 
error theory taking this fact into account. He discusses only continuous distribu
tions. His book contains a large number of empirical distributions from lotteries, 
astronomy, anthropology, botany, meteorology and dimensions of paintings, and 
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it became a challenge for him and his followers to find corresponding theoretical 
distributions. Comparing the empirical and calculated frequencies he measured 
the goodness of fit by the sum of the absolute deviations. He (1897, pp. 4-5) 
states his program as follows: “Does there exist a general law or at least a law 
applicable for most collectives for the relation between the numbers and the sizes 
of the specimens? Actually it is possible to obtain such a law and it is the main 
task in the following to establish it.”

Fechner solves this problem in two steps. First (1897, pp. 69-70, 295-299) he 
generalizes the normal distribution to the “two-sided normal”, which is a com
position of two normal distributions with different standard deviations and com
mon mode, see Hald (1998, pp. 378-380). He recommends this distribution for 
describing moderately skew data. Second (1897, pp. 339-351) for more extreme 
skewness he uses the logarithm of the variable as two-sided normal. For variables 
taking on only positive values he considers the logarithmic form as fundamen
tal, the arithmetic form being a useful approximation if the relative variation is 
small. He fits a normal and a two-sided normal distribution to his moderately 
skew empirical distributions to demonstrate the improvement in the goodness of 
ht, and for distributions of greater skewness he compares the fits obtained by 
using the arithmetic and the logarithmic forms of the two-sided normal.

Lipps (1897) gives a summary of the Kollektivmasslehre and indicates that 
Fechner’s solution is insufficient. He says that there are two essentially different 
methods of solution: (1) the direct method, to seek a (more flexible) formula 
for the distribution, which has recently been done by Bruns (1897), (2) the 
indirect method, to transform the random variable such that the corresponding 
distribution has a specified form.

From about 1897 a lively discussion of the new systems of frequency functions 
took place among natural scientists in the German speaking countries, see for ex
ample Ludwig (1898), Duncker (1899), and Ranke and Greiner (1904). We shall 
in turn discuss the mathematical contributions in the form of series expansions 
due to Bruns, Lipps and Hausdorff.
Bruns’s derivations of the A series, 1897, 1898, 1906a.

H. Bruns (1848-1919) was Professor of astronomy at the University of Leipzig. 
His main work in statistics is Wahrscheinlichkeitsrechnung und Kollektivmassleh- 
re (1906a), which he characterizes as the first textbook on Kollektivmasslehre in 
general. For priority reasons, and perhaps also as an excuse for the lack of 
references to recent literature, he refers in the preface to his previous papers 
on series expansions of distribution functions and states that the manuscript of 
the book was ready for printing in the beginning of 1900, but publication was 
delayed because he at the time contemplated to give a more extensive exposition 
of applications of the theory.

Bruns states that the application of probability theory presupposes that ob
jects exist that at least approximately realize the concepts of random events and 
theoretical frequency distributions. That this is so is for the first time demon
strated by Fechner in his Kollektivmasslehre. However, Fechner’s mathematics
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is rather primitive and it cannot be expected that an arbitrary frequency func
tion can be approximated by the two-sided normal distribution containing only 
three parameters. Instead Bruns (1898) proposes to use an expansion of the form 
g(x) = and, for simplicity, to choose f(x) as normal. He considers
this series as the general solution of Fechner’s problem.

Bruns (1897, 1898, 1906a) gives three derivations of the A series. Except for 
some changes of terminology and notation we shall first relate the proof given in 
1898 and 1906 and later comment on the first proof.

Let G(x) be the distribution function corresponding to the continuous density 
g(x) so that

2G(.t) — 1 = J g(t) dt, —oo < x < oo.

Bruns expresses this function as a linear combination of the Gaussian error func
tion

Z
x

exp (—t2) dt

and its derivatives. Both functions increase from —1 to 1 when x increases from 
—oo to oo. Introducing a scale parameter in 0(x) and letting this parameter tend 
to zero Bruns gets the degenerate error function

1
sgn x — 0

-1

for x > 0 
for x = 0
for x < 0 .

It follows that
POO

E[sgn (y - x)] = / g(x) dx — / g(x) dx
J —oo J y

= 2G(z/) -1, —oo < y < oo

The problem is thus to find a series expansion for sgn (y — x).
Noting that

0'(x) = 27t-^ exp (-z2),

and using the characteristic function for the normal distribution Bruns gets

H*) = exp (2ixt — t2) dt.

Integrating with respect to x he obtains

/>/ x 1 f°° 2.dt0(x) = — / exp (2itx — t2) — , 
J—oc

and
sgn a; =
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Hence,

(3-3)

To evaluate the second exponential factor in the integrand Bruns uses the relation

0'(x + t) = O'(x) exp (_2xt — t2)
oo

= e'(x)^7?;j(x)(2«r,
J=o

(3-4)

where the power series is found by multiplying the series for exp(—2xt) and 
exp(—t2), which shows that Rj(x) is a polynomial of degree j. It follows that

OO

exp (—2ixt + t2) = (2ity , (3.5)
j=o

which inserted in (3.3) gives

1 f°° dtsgn(y - x) = - V Rj (x) / exp(2i^ - t2) (2it)J — .

Differentiating (3.2) j times it will be seen that the integral in the series above 
equals so that

OO
sgn(?/- x) = ^2Rj(x)0(j)(?/) . (3.6)

j=o
Hence,

OO
2G0)-l = ^Æ[fij(x)]00>fø), (3.7)

J=o

which he (1906a, p. 115) calls “the fundamental formula for the interpolatory 
representation of an arbitrary distribution function [Kollektivreihe].” 
Differentiation gives the A series

oo
S(ÿ)= 2^m(x)]^+1>fø). (3.8)

J=o

Differentiating (3.4) with respect to t and setting t = 0 Bruns finds

0Ü'+1\x) = 2\)!0,(x)RJ(x),

so
oo

»tø) =
j=0

(3-9)
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He (1898, p. 351; 1906a, p. 43) derives the first five polynomials and notes that 
the rule of formation from then on is obvious. He finds the differential equation 
and the recursion formula for the 7?’s, but does not mention the orthogonality. 
To facilitate the applications of the series he (1898) tabulates 0^(x)/2J_1 for j = 
1,... ,6 to four decimal places for x = 0.00(0.01)4.00. This table is reproduced 
together with a table of 0(x) at the end of his book (1906a).

Since Rj(x) is a polynomial of degree j the coefficient E[Rj(x)] is a linear 
combination of the first j moments of x. Bruns introduces the linear transfor
mations

u — h(x — c) and v = h(y — c), h > 0 , — oc < c < oc ,

and remarks that by setting

c = E(x) and h~2 = 2E[(x — c)2] ,

the series takes on its “Normalform” in which £'[7?i(u)J = = 0.
Bruns stresses that the series for G(x) may be used also for a discontinuous 

distribution if only the cumulative probabilities are referred to the midpoints of 
the consecutive values of the argument.

Using characteristic functions Bruns (1906a, pp. 134 137) proves that the 
successive coefficients in the standardized A series for a sum of random variables 
are of the order of j 2, if the variances of the components are
finite and of the same order of magnitude. He remarks that the main terms of 
this series is due to Laplace and that further terms have been derived by Bessel 
(1838).

Turning to the fitting of a partial sum of the series to an observed distribution, 
Bruns estimates the coefficients by means of the corresponding empirical values, 
corrected for grouping in the continuous case. The number of terms included 
in the series depends on the goodness of fit. In his book he presents detailed 
schemes for carrying out the calculations and one worked example. He refers to 
a paper by his student F. Werner (1900), who has calculated the first six terms 
of the series for 18 observed distributions, among them some of Fechner’s, and 
compared the observed and calculated frequencies numerically and graphically, 
an enormous amount of work. In 16 of the 18 cases Werner considers the fit as 
satisfactory, only for Fechner’s two distributions of dimensions of paintings more 
than six terms are required. He mentions that the method is unsatisfactory for 
non-homogeneous data.

Bruns’s series is the same as that previously found by Gram and Thiele since 

It is odd that he does not refer to Gram’s paper (1883) published in a German 
mathematical journal.

Bruns’s proof is artificial and cumbersome compared with Thiele’s which uses 
only the orthogonality of the series. One naturally asks the question: Why does 



MfM 49 On the History of Series Expansions of Frequency Functions 29

Bruns not mention and use the orthogonality? It seems that the explanation is 
to be found in the first part of his 1897 paper where he discusses a more general 
series. Briefly told, he introduces a distribution function defined by replacing t2 
in (3.2) by a power series in t2, assuming that

oo

exp[-
3=0

has the same properties as exp(—t2) for |t| —» oo. As a result t2 in (3.3) is replaced 
by the power series, and the evaluation of the second factor in the integrand leads 
to a series of the same form as (3.5) but with a more complicated definition of 
the polynomials {Rj(x)} which in the general case are non-orthogonal.

In the second part of the paper he specializes to the normal distribution and 
proves the usual properties of Rj(x), among them the orthogonality, and con
cludes that “if a convergent series of the form

OO
s(æ) = 52cJ6*(j+1)(a;)

3=0

exists, then the coefficients can be found in the same way as by the trigonometric 
series.” Bruns’s fine proof of the result for the general series is thus superfluous 
for the special case, but he nevertheless reproduces it in his two later expositions.

The originality of Bruns’s general proof rests upon the relations (3.1) and 
(3.3). His method of proof is influenced by the classical proofs of the central 
limit theorem, see Hald (1998, p. 319) on Poisson’s proof.
Lipps’s derivations of the A and B series, 1897, 1901, 1902.

Lipps considered Bruns’s proof of the A series as too complicated and pre
sented two simpler proofs (1897, 1901). He (1901) showed that the A and B 
series may be derived from a common formula. He determined the coefficients 
by the method of moments without using the orthogonality.
Lipps’s first derivation of the A series, 1897.

In his first proof (1897) of the A series he considers the given frequency func
tion g(x) as defined by the equidistant arguments aq,... ,xm with frequencies 
gi,... ^9i = !» that is, a discontinuous or a grouped continuous distri
bution. He remarks that it is simpler to use a degenerate normal density with 
infinitely large precision instead of Bruns’s sgn x and he therefore introduces the 
approximation

rn
C(x) = 7T~^h^Jgjexp[-h2(x - Xj)2],

3=1

and the corresponding probability

/ C(rr)drr = -^2gj{e[h(x0 - xj] - 6»[/i(æa - a^)]} , xa xß .
2 j=i
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Developing this function around an arbitrary value Xq, say, and introducing the 
standardized variables u = h(x - x0) and Uj = h(xj — Xq) he gets

oc m

fc=0 7 = 1

Differentiating with respect to xa and xp and letting the arguments tend to x 
Lipps obtains

1 oc m

cw = 2 Et-Trø-’^’O) E “fø ■ 
fc=l 7 = 1

which shows that Cßx) is a linear combination of the derivatives of 0(x) with the 
moments of the given distribution as coefficients. Using the properties of the 
coefficients in Bruns’s series (3.9), among them the orthogonality, Lipps proves 
that the two series are identical.

For h —■> oc the moments of g(x) and Cßx) are identical. Lipps remarks that 
the approximation may be satisfactory also for finite values of h. and he evaluates 
the differences between the exact and approximate moments up to the fifth order 
to .judge the goodness of the approximation.

Lipps’s derivation of the B series, 1901.

Lipps’s general theory of the A and B series is to be found in the 215-pages 
long paper Die Theorie der Collektivgegenstände (1901) in the section entitled 
“A method for representing arbitrary given functions” (p. 166). The paper was 
published as a book the following year.

Lipps represents the given discontinuous frequency function g(x) by the series 
n

g(x) = ^Cjf(x + ßj), ßr < ß2 < ■■ ■ < ßn , n=l,2,..., (3.10)
j=i

where the /3’s are suitably chosen integers. He determines the coefficients by the 
method of moments.

Noting that

Dj=52 xr^x+=’
multiplying (3.10) by xr, and summing over x, he gets

n r / \ n

hr ~ ^2 CjVrj ~ ~ 1 ) ( ? ) Vr-k \ ß-j cj ■
7 = 1 fc=0 ' 7 = 1

From this system of equations Ecj, E/3jCj,... may be found successively as func
tions of the /z’s and p’s, and by solving the resulting linear equations the c’s are 
found.
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For a continuous g(x) the /3’s are real numbers and the sums are replaced by 
integrals but otherwise the procedure is the same.

Let A/(z) — f(x + 1) — f(x) and V/(x) = f(x) — f(x — 1) and set

Generalizing (3.10) Lipps writes the general B series in the form
oo oo

g(x) = cof(x) + ^c*AJf(x) + '22cJVJf(x), x = 0, ±1, ±2,... .
j=i j=i

In the following he assumes that g(x) = 0 for x < 0 and limits the discussion to 
the series OO

5(æ) = , Z = O, 1,.... (3.11)
j=o

Lipps chooses Xx/x\ as f(x) and finds that all the c’s contain the factor 
exp(—A). We shall therefore use the Poisson frequency function as /(x), which 
only requires a trivial change of Lipps’s formulas and makes comparisons with 
later developments easier.

For
f(x)=e~xXx/xl, A>0,

Lipps finds
= f(x)Pj(x), j =

where

(3.12) 
fc=0 ' '

^(fe) _ xçx _ i)... çx _ + -q , fc 1, and = 1.
Instead of the ordinary moments he introduces the binomial moments, which 

we shall denote by a and ß, respectively. Multiplying (3.11) by (^) and summing 
over x, he gets

r

ar — ßrjCj , r = 0,1,... , (3.13)
a=o

where

ßr = 52 =
and

= (-l)3Ar"3/(’’-j)!> j=0,l,...,r. (3.14)
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To prove this formula Lipps uses that

= - r)P7 (rr), (3.15)

and
PJ(T) = P,(x-l)-ip,_1(2:-l). (3.16)

which by iteration gives

PjW = Pf(* -r) - Q) - r) + Q ^P,-2(.t -r)- ....

This is a finite series that breaks off when the binomial coefficient or the factorial 
coefficient become zero, ft follows that

f{x - r)P,(x) = - r).
v=0 ' '

Using that

52 - r) = 52-^) = 1 ’
X X

and
52 -r) = 52 = °’ 7 = 1,2,...,

X X
(3.14) follows. Hence, the matrix of coefficients in (3.13) is lower triangular, and 
solving for cr Lipps (p. 505) gets

r
= (3.17)

5=0

Lipps shows how ar may be calculated by repeated summations of g(x). He 
also expresses /ir in terms of oq.... ,ar, but does not go on to express cr in 
terms of ^o, • • • , Hr ■> which is easily done but the resulting formulas are clumsy 
compared with (3.17).

Lipps presents two empirical distributions with positive frequencies for x E 3 
and x 7, respectively. Fitting finite series with 5 and 8 terms, respectively, he 
naturally obtains a good fit. He uses conveniently chosen values of A and remarks 
that A = cvi/ao gives c\ — 0.

It seems that Lipps is the first to develop a B series that is useful for approx
imating skew discontinuous distributions, it is simpler and more natural for this 
purpose than Thiele’s B series.
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We shall now comment on Lipps’s proof from the Thiele-Gram point of view.
Like Gram’s series (2.4), Lipps’s series may be written as

oo

g(x) = .
a=o

It is therefore natural to ask whether the P’s are orthogonal with respect to the 
weight function /(a?). To prove that this is so we first observe that ßrj — 0 for 
j > r which follows by repeated summation by parts. From (3.12) and (3.14) we 
then get for r s

£ps(x)Pr(i)f(x) = ^Ps(a;)Vr/(x)
X X

s
= 52(-l)'tS<fe>A-fcÄr

Zc=O
s

= (-l)rA-r J2(-l)fcs(fc)/(Å:-r)!
k=r

= x-rs^q-iy-r,

which proves the orthogonality and shows that

£^L)/(.r) = r!A-r.

It seems that Ch. Jordan (1926) is the first to note and prove the orthogonality. 
Using the orthogonality it follows that

cr = Ar[r!]-1 ^2 pr(x)g(x),
X

which by means of (3.12) immediately gives (3.17).

Lipps’s second derivation of the A series, 1901.

Lipps (1901, p. 171) derives the A series analogously to the B series. Let g(x) 
and /(a?) be continuous frequency functions and set

n
d(x>) = '52cif(x + Pi),

i=0

where the ß's are suitably chosen real numbers. Using Taylor’s series^

OO

f(x + /?) = ^ß3 fJ\x)/j\,
3=0
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Lipps obtains the A series in the form
oo

j=0

He mentions that a suitable choice of /(x) is the normal distribution and notes 
that the corresponding series has been derived by Bruns (1897, 1898) in another 
way, and he refers to Werner (1900) and his own 1897 paper.

Setting
/(a?) = hi9(t), t = h[x — &),

Lipps obtains
OO

= E
j=o

The method of moments gives

where

O0)(t)dt/'
j = 0,1,... , r,

and 

which takes on the values

(3.18)

z^2r = (2r)!/(22rr!) and r'2r+i=0, r = 0,1,....

Hence,

2r
h2>2r = ^(-l)-’(2r)O^2r_,(/lJq)

j=0
r

= (2r)!£(/l«C2,)/|22-«(r-J)!
J=o

r
h2r+1H2r+i = —(2r + 1)! ^(/12i+1C2,+1)/[22’-2>(r - j)l]. 

j=0

and
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The matrix of coefficients in this system of linear equations is lower triangular. 
Lipps (p. 510) solves the equations with respect to hrcr with the result that

r
C2r = Y,(.-lYii2r-2j/[h2i(2r - 2j)!222J!], r = 0,1,... , (3.19)

J=o

and
r

C2r+1 =52(-iy+1/i2r+i-2J/[/i2j(2r+l-2j)!22jj!], r = 0,1,.... (3.20) 
5=0

His solution is simple and his formula directly applicable. He does not in
troduce the Hermite polynomials, which give the formally more elegant solution 
(2.9). Lipps does not give an example of the application of the A series, presum
ably because a wealth of examples had been provided by Werner (1900).

Lipps’s criticism of other systems of distributions, 1901.

Lipps (1901, pp. 152-166) critizises the ideas and systems of distributions 
proposed by Gauss, Hagen, Fechner, and Pearson. He distinguishes between 
frequency functions based on hypotheses of a probabilistic nature and “empirical” 
graduation formulas.

The Gaussian distribution is based on the hypothesis of the arithmetic mean, 
which was generalized by Fechner to a hypothesis about the mode. Hagen derived 
the normal distribution from the hypothesis of elementary errors and the sym
metric binomial. This was generalized by Pearson, who first derived the gamma 
distribution by means of the skew binomial and afterwards his four-parameter 
system of distributions from the hypergeometric. Lipps remarks that Pearson’s 
criterion to find out whether a distribution has a finite or an infinite range is il- 
lusionary, because the empirical distribution has finite support so supplementary 
a priori knowledge is required to reach a decision.

He (p. 163) points out the shortcoming of the probabilistic hypotheses, because 
“every distribution can be produced by an unlimited number of different systems 
of elementary causes. The often occurring inclination to draw conclusions about 
the nature of the elementary causes from the form of the empirical distribution or 
from the estimates of its characteristics has no justification and leads to untenable 
suppositions without scientific value.”

As an example he demonstrates that a certain discrete distribution cannot be 
generated by independent but by dependent causes. He remarks that elementary 
causes generally are dependent.

Fechner and Bruns believed that a single formula would be sufficient for de
scribing any regular frequency function, but Lipps showed that a multitude of 
series expansions exist for this purpose, and he determined the coefficients in the 
two most important cases. However, he (p. 176) remarks that the coefficients 
depend not only on the moments of g(x) but also on the choice of the leading 
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term fo(x) of the series and therefore “an arbitrary and unnatural element is 
introduced in the characterization of the distribution.”

Instead of the series he prefers the symmetric functions, in particular the 
means, which he defines as er = (//r)1/r, that is,

m

£r = - b)r > r = 0, 1,...,
i=l

and the corresponding empirical means, êr says. By algebraic methods he first 
derives inequalities between the e’s for positive values of x — b, and next he 
discusses the general case, summarizing his results on pp. 499 503.

He (pp. 538-564) analyses five examples from psychology, anthropology, bo
tany and meteorology by calculating the first six means and finding confidence 
limits for the theoretical values by means of the asymptotic variance

var(^) = (e£ -^r)/n,

where n is the number of observations. He (p. 551) says that “These values are 
the basis for characterizing the properties of the distribution and for comparisons 
with other distributions of a similar kind.”

Summarizing the history so far it will be seen that the contributions of Thiele, 
Gram, Bruns, and Lipps give a complete solution of the approximation problem 
by determining the coefficients in the A and B series and by giving the asymptotic 
distribution of the coefficients in the partial sums.

Hausdorff’s derivation of the normal A series, 1901.

F. Hausdorff (1868-1942) vas Lecturer at the Business School in Leipzig when 
he wrote his paper (1901), in 1910 he became Professor of mathematics at the 
University of Bonn. His many contributions to probability theory, some of them 
unpublished, and their importance for later developments have been discussed 
by Girlich (1996).

There are no new results in Hausdorff’s paper, but his method of proof is 
simpler than previous ones. Independently of Thiele (1899), he introduces the 
cumulants, which he calls “canonical parameters”, by the equation (2.14). He 
refers to Laplace, Bessel, and Bruns for previous derivations of the A series and 
uses the classical method of characteristic functions and the inversion formula 
combined with the definition of the cumulants.

Let V>(t) = £/[exp(ifir)J be the characteristic function of g(æ)so that
oo 

W) = exp(^2(ît)JKj/j!).
j=i

Using the inversion formula Hausdorff gets

1 f= ^ / exp|-iæt + dt, (3.21)



MfM 49 On the History of Series Expansions of Frequency Functions 37

which for «1 — 0 and «2 = 1/2 becomes

If 00g(x) = ö~ exv\~ixt - f2/4] exp£(^)J^7>!] • (3-22)
J j=3

To carry out the integration Hausdorff remarks that

f(ity exp[—ixt — é2/4] di = (—j exp[—ixt — t2/4] dt

— (—l)J27rd^\æ)
= 2%^)//* (a;), j=0,1,.... (3.23)

Espanding the second factor of the integrand in (3.22) in a power series of (zi) 
and using (3.23) he finds the first six terms of the A series in the form (2.13).

Using the orthogonality he gets the series in the form (2.8) and (2.9).
Finally, he assumes that x is the sum of n random variables with finite cu

mulants so that the rth cumulant of the standardized variable (x — n«i)(n«2)_2 
is of the order of n1-(r/2L Inserting this result in the A series he gets (1.4). 
Hence, his method of proof is a streamlined version of the classical proofs of the 
extended central limit theorem.
Bruns’s A series for discontinuous distribution functions and his deri
vation of the B series, 1906b.

Bruns (1906b) characterizes his paper as a supplement and extension of his 
book (1906a). He discusses four topics:
(1) A slight simplification of his derivation of the A series.
(2) A series expansion for discontinuous distribution functions by means of the 
A series.
(3) A derivation of a general form of the B series and in particular the series with 
the binomial and Poisson distributions as leading terms.
(4) A numerical example of the Poisson B series.

Let g(xk), k — 1,... , m, be a frequency function, Zg(xk) = 1, aq < aq < 
... < rcm, with the distribution function

G(xi) = g(xy) + g(ar2) + ... + gfa).

Bruns’s series expansion is based on the function E[sgn(y — a:)], see (3.1), which 
in the present case equals

m
J2sgn(z/- a:fc)ff(a:fc). (3.24)
k=l

For y — Xi he gets
n

^2sgn(a?i - Xk)g(xk) = tø(aq) + ... + s(aq_i)] - [g(xi+1) + ... + g(xm)] 
k=l

= G{xi-i) + G(aq) — 1.
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The resulting series is thus an expansion of the function

G,(xi) = |[G(a:j_1) + G(^)], (3-25)

corresponding to the midpoints of the vertical parts of the stepfunction G(xi).
Inserting the A series expansion (3.6) for sgn(j/ — x) in (3.24) Bruns finds

2G*(y) - 1 = E[sgn(y - z)]

=ÈÈ Ej(;rfc)s(;rfc)0(j)(î/) 

j=0 fc=l
oo

= 52E[/?j (æ)]0(j)(i/), y = æi,... ,xm , (3.26)
j=o

where
m

E[E/æ)] = Rj(xk)g{xk), (3.27)
fc=i

which has the same form as the continuous version (3.7).
The corresponding Edgeworth series for a lattice distribution with span h has 

been discussed by Feller (1966, pp. 512-515), who uses the auxiliary variable 
Xi + Si, where Si is uniformly distributed on (—h/2, h/2).

To find the frequency function Bruns notes that

VG*(z;) = -[g(xi) + g(xi^i)],

and
V2G*(xj) = |[.g(^i) - 5(^-2)] ,

so that
V2G*(aq) = iÿ(æi), V2G*(x3) = |tø(æ3) - , • • • ,

which leads to
i

S(æ2.+1) = T - 1], i = 0,1,... , [(m - l)/2].
k=0

An analogous formula holds for g(x2i\
The same result may be obtained by solving (3.25) for G(zJ, which gives

i-i
G(.ri)=2 52(-l)tG-(x,_t)

k=0

b/2]
= 2^2 VG*(xi_2fc)

k=0



MfM 49 On the History of Series Expansions of Frequency Functions 39

and
[i/2] 

5(^) = 2^2 V2G*(xi_2fc).

k=0

Bruns refers to the derivations of the B series by Lipps (1902) and Char
lier (1905b, 1905c) and remarks that he will derive the series from fundamental 
principles. His method of proof is analogous to that of the A series with the 
modification that characteristic functions are replaced by generating functions 
and sgn(t/ — x) is replaced by the function e(x, y) which equals zero for y 4 x 
and unity for y = x. He limits the investigation to expansions of the same form 
as (3.3), that is,

oo 
e(x,y) = ^a^b^y), (x,?/) = 0,1,... ,

j=o

which means that the discontinuous distribution can be written as

OO
g(y) = ^2^xk,yy)g(xk)

k=0
oo oo

— cjbj fø) > Cj = y.7 (æfc)ff(a'fc) ■

j=0 fc=0

Bruns proves that ctj (x) is a polynomial in x of degree j so that Cj is a linear 
combination of the first j moments of g(y). Requiring that bq{y) be a frequency 
function he gets bj(y) = VJ5o(?/) so the B series becomes

oo
g(y} = ^EMx)]vJW),

j=0

which is analogous to (3.8).
Using the Poisson distribution for b0(y) he obtains the same results as Lipps 

and Charlier. He applies this series to Bortkewitsch’s example of the number of 
deaths by horsekicks of soldiers in an army corps.

He introduces the standardized variable and proves that the Poisson B series 
tends to the normal A series for the Poisson parameter tending to infinity.

As another example he sets b0(y) equal to the binomial (n,p) and proves that 

(-i)^w=g(-i)kQ:Jfc)(n+fcfc-iy. (3.28)

However, he does not evaluate VJ&0(?/).
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R. von Mises’s discussion of the A and B series, 1912, 1931.

In his widely read textbook E. Czuber (1908, vol. 1, pp. 356 -372) reproduces 
Bruns’s (1906a) proof of the A series and his example; he adds two examples and 
reprints Bruns’s table of the derivatives of d(x). He refers to Hausdorff (1901) 
and Lipps (1902) but does not indicate their methods and results.

R. von Mises (1883-1953) was Associate Professor of applied mathematics 
at Strasbourg from 1909, Professor at Berlin from 1920 to 1933, and at Har
vard from 1939. He (1912) points out that the A series is a special case of the 
Sturm-Liouville orthogonal expansion of solutions to a second order differential 
equation, which is satisfied by î2(x) and its derivatives. Using the orthogonal
ity and referring to the Hermite polynomials he gives a simple derivation of the 
coefficients in Bruns’s series. His method is thus the same as Thiele’s with the 
exception that he does not introduce the cumulants.

In his textbook von Mises (1931) gives a complete account of the A and B 
series, which he calls “Die Brunssche Reihe” (pp. 250 265) and “Die Charliersche 
Entwicklung” (pp. 265 269), respectively. He does not refer to Hausdorff and 
Lipps.

The A series for a continuous density may be written as
oo 

g(x) = tf(a?) + ^2cj+i^0+1)(x).
a=o

By integration we get the A series for a continuous distribution function

00 rX
G(a;) = F(æ) + cj+i^^0(a?), F(x) = / tf(x) dx , (3.29)

j=o

where

(-1V+1 /■
ca+i = 2J'+1(j + l)! I Hj+i^9^dx (3.30)

= ^jT / H^X^G^~F^dx> 2 = 0.1,.... (3.31)

Formulas (3.29) and (3.31) are von Mises’s reformulations of Bruns’s results.
Considering the discrete case von Mises assumes that G(.r) is a stepfunction 

with steps of size g(xk) at x = xk, k = 1,2,... , m, Y,g(xk) = 1. He evaluates 
(3.31) by splitting up the integral into its m + 1 components corresponding to 
the intervals (-oo, aq), (aq, x2), ■ •. , (a;m,oo). Using the fact that

/•æfc+i

9xk
H* (a:) dx =

I rxk+1

+ 1) Jxk
DXH*+I(x) dx

2(j + ^[Hj+i(xk+^ - ,
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he gets
(-1V+1 ™

cj+1 ~ 2-i+i Q- i i); , (3.32)

that is, the discrete analogue to (3.30). Von Mises believes that this result is 
new but it had previously been derived by Bruns (1906b) by another method of 
proof, see (3.27).

Von Mises uses the series (3.29) with the coefficients (3.32) for representing a 
given stepfunction G(t), whether this is a discontinuous distribution function or 
a grouped continuous distribution. This is, however, unsatisfactory because the 
series takes on the value G*(rr) at any point of increase. It is peculiar that he 
does not use Bruns’s correction for grouping in the continuous case.

4 The British School

F. Y. Edgeworth (1845-1926) was Lecturer in logic at the University of London 
from 1880, Professor from 1888, and from 1891 Professor of political economy 
at Oxford University. His contributions to mathematical statistics have been 
discussed by Bowley (1928), who also gives an annotated bibliography of Edge
worth’s 74 statistical papers, see also Stigler (1978, 1986) on modern aspects of 
Edgeworth’s work and his importance for the emergence of the British School of 
statistics. Here we shall mainly discuss his (1905) derivation of “the generalised 
law of error,” today known as the Edgeworth series.

Edgeworth knew the proofs of the central limit theorem by Laplace and Pois
son from Todhunter (1865) and Czuber (1891), to whom he repeatedly refers, 
but he was ignorant of the works of Bienaymé, Chebyshev, Thiele, Bruns, Lipps, 
and Hausdorff.

As discussed by Stigler (1986, pp. 338-341) Edgeworth and Pearson competed 
on developing and first presenting a generalized system of frequency functions. 
After a preliminary paper on “Poisson’s asymmetrical frequency function, ” i.e., 
the first two terms of (1-4), Edgeworth read a paper on the generalized law of 
error to the Royal Society, which however rejected it for publication. Only an 
abstract was published in which Edgeworth (1894) presented Poisson’s result 
and added that it could be obtained independently from “a general form for 
the asymmetrical probability curve.” Edgeworth (1895) points out that his 1894 
paper is “preserved in the archives of the [Royal] Society,” which implies that it is 
available for other interested statisticians. Pearson thus won the first round of the 
competition; his four-parameter system of continuous distributions was published 
in 1895 and successfully applied to many sets of data. However, Edgeworth came 
back; first, he (1900, pp. 75-77) presented the third term of his series, discussed 
its importance and applied it to one of Pearson’s examples; next, at his instigation 
Bowley (1902) discussed the three terms of the series, supplied some auxiliary 
tables and gave many examples of applications to British wage statistics; and 
finally Edgeworth derived the complete series and gave some applications in 
three papers (1905, 1906, 1907).
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Edgeworth’s generalized law of error, 1905.

Edgeworth's 1905 paper is the decisive contribution to the development of the 
extended central limit theorem begun by the French School. He derives the ge
neral term of the A series and rearranges the terms according to magnitude. He 
gives two proof, one by the method of moments and one by Laplace’s method of 
characteristic functions. Except for the reordering of terms Edgeworth’s results 
are closely related to Thiele’s (1899). However, Edgeworth’s paper is important 
for the historical development because Thiele’s paper was overlooked. Edge
worth’s paper is somewhat difficult to read; we have numbered and reordered his 
arguments slightly.
(1) Order of magnitude.

Edgeworth considers the sum sn = Xi + ... + xn of n independently dis
tributed “elements” (he avoids the term error except for the name of his law) 
with zero expectations and moments and /ir{, respectively. Assuming that the 
n distributions have finite support and that /z2 = ^l^2i is finite it follows that 

= O(n_1), p,ri = O(n~r/2) and /rr = O(n1-r/2), r _ 2, 3,....
Edgeworth introduces the cumulants by developing the logarithm of the mo

ment generating function in a power series which shows that

4! 2
^2i 1^2i •> , ^4i — l^4i n f^2i •>■•••2 X (2!)z

He stops at the fourth order but remarks that nri “is a homogeneous function” 
of /X2i, ■ ■ ■ , l^ri wherefore Krj = O(n~r/2). The general formula for Kri in terms 
of the ;z’s is given by Thiele, see (2.16), from which Edgeworth’s result follows 
by replacing /j,a by n~a'2 etc.

From the independence of the x’s it follows that

In MSn (i) = In MXi (t),

which implies that so that K,r = O(n1 r/2). Edgeworth denotes the
cumulants by kr, r — 0,1,..., corresponding to our Kr+2-
(2) The moments in terms of the cumulants and the grouping of terms in order 
of magnitude.

Developing the right side of the relation

1 + /i2i2/2! + /i3i3/3! + ... = exp(«;2t2/2! + K3/:3/3! + ... ) (4-1)

into a power series Edgeworth finds

.2r0+3ri+... r0 + n + •.. = r ,
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where the inner summation is over all partitions of r into non-negative integers 
r0, ri,... . Introducing the notation

r* = (n,r2,...)
ri + r2 + ... = r - r0 ,

(4-2)

we have
1+Ë E n (^) ° t2’'oQO)t3ri+4r2+- ■ («-a)

r=l 0

Identifying the coefficients of P in (4.1) and (4.3) Edgeworth gets

ro + n + • • • = r
2r0 + 3ri 4-... = j . (4-4)

He also writes this result in the same form as Thiele, see (2.15).
However, for Edgeworth’s purpose (4.4) is the more practical form because 

the first term is found by setting r0 as large as possible whereafter terms of 
lower order are obtained by gradually diminishing ro and increasing n, r2,... as 
demonstrated by Edgeworth in the following two cases:

(2j)! (2j)l /«2V-2 «4 (2j)! mV-3 J_ 7^3\2
jl \ 2! / + (J - 2)! V 2! J 4! (J-3)! \ 2! 7 2! \ 3! /

(2j)! /«2 V-3 «6

(j —3)!\2!/ 6!
(4-5)

and

_ (2j + 1)! /«2 y’"1 «3 , (2J + 1)1 ^5 , 4-19
M2j+1 (J — 1)! \ 2! 7 3! + (j - 2)! \ 2! J 5! 3

(4-6)
For /i2j the first term is of order unity, the next two constitute a group of 

order n_1, the last term is the first in a group of order n~2, and so on. For M2j+i 
the first term is of order n_T the next is the first in a group of order n~3/2, and 
so on.
(3) Each group of terms in the moments corresponds to a linear combination of 
the normal density and its derivatives.

Edgeworth notes that the first term of /i2j- in (4.5) equals the (2J)th moment 
of the normal distribution with zero mean and variance k2. Denoting the normal 
density by /(x) he proves that the series

g(x) = }(x) - ^D3f(x) + my
.4! 2! k 3! z

has the same moments as sn and that the terms are ordered according to mag
nitude in the same way as in (4.5) and (4.6).
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To evaluate f x-ig(x) dx he uses the formula

y tj(-D)j 2sf(x)dx = J- ,

which is proved by integration by parts and from which the result follows.
The first term of (4.7) is of order unity, the next of order n_2? the following 

two terms constitute the third term of the Edgeworth series and are of order n_1, 
and so on. The series is thus an asymptotic expansion of the density in question. 
(4) A symbolic representation of the series.

The proof given above is unsatisfactory because it stops at terms of order n . 
To give a general proof Edgeworth writes the series in the form

g(x) = exp(a3(-D)3/3! + k4(-D)4/4! + ... )/(x). (4.9)

Developing the operator in powers of D by the same method as in (4.1) he obtains

OC I I (y j .
, S- = (SI,S2,'.’). (4-10>

The problem is to prove that the moments of g(x) are the same as those given 
by (4.4). The moment of order 2j equals

/
oo 

o + E E <?(V)(-d)3“‘+4'2+-j/a) dx.
S=1

Setting 3si + 4s2 + • • • = 2j — 2r0 0 we get by means of (4.8) that

Si + «2 + • • • = 8 
2ro + 3si + ... — “2 j,

which is identical to (4.4). A similar proof holds for
The symbolic form of the series had been derived by Thiele (1899) by another 

method of proof, see Hald (2000a).
To find the general expression for the series ordered according to magnitude 

Edgeworth introduces the generating function

exp(«3(-D)3z/3! + k4(-D)4z2/4! + ...), (4.11)

remarking that the successive groups of terms in the series are obtained as the 
coefficients of the successive powers of z in the expansion of this function. The 
expansion follows immediately from (4.10), which shows that the coefficient of 
zm, m = Si + 2s2 + ... + msm, equals

771

y2(-Dr+2va)y2Q(S-'), « = 1,2,..., (4.12)
3=1 
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since 3si+4s2+ ... — m + 2s. The order of Q(s*), s = 1,..., m, is independent 
of s and equals n~m'2, which follows from the facts that

Q(s*) ex ,

and nr = O(n1_r/2), r = 2,3,... , so that the exponent of n in the order of Q(s*) 
becomes

(1 - -)si + (1 — -)s2 + ... = si + s2 + ... — - (3si + 4s2 + ... ) = --m.

Hence, (4.12) is the compact expression for the (m + l)st group of terms, all of 
order n~m/2, of the series. It is easy to check that the first three groups are given 
by (4.7); the next group is

5! 3! 4! 3! K 31/ J

as given by Edge worth (1905, p. 61).
(5) Edgeworth’s completion of Laplace’s proof.

Edgeworth remarks that the same series may be found by an extension of the 
method of Laplace and Poisson. We shall sketch Edgeworth’s proof using modern 
notation and setting u = sn/

By the same procedure as used by Bienaymé and Hausdorff, see (3.21)—(3.23), 
Edgeworth obtains

p(sn) = / exp(—zut - t2/2) exp(y)(zt)JKj/j!) dt.
3=3

He remarks that an expansion of the second factor of the integrand may be found 
by replacing (—D) by (it) in the expansion (4.10) of the operator. Hence,

i r °°
p(sn) = 2~ I Gxp(—iut — t2/2)(l +

S=1

Setting
3si + 4s2 + ... = j , j 3 ,

and using (3.23) with ø(æ) instead of 'd(x), it follows that

oo b/3]

y/K2P(Sn) — </>(«) + y^(~l)j0(j)(u) ££q(5-), (4.13)
j=3 s=i

which is the completion of the extended central limit theorem in the form of an 
A series. Edgeworth also writes the last factor in the form (2.19).
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To bring (4.13) in a form analogous to (1.4) we introduce

/k.(r+2)/2 _  - /<- (Z--4-2)/2 r/21 _ lnrl^ r=l,2,... ,

and

so that

Q7(s*) =
1 Z7i'.Si 1 /72 V2

si! \3E V 4! 7

Q(s*) = Q7(s*)/nj/2 s, s = 1,... , [j/3].

Hence, (4.13) becomes

b/3]

(4.14)

For j 6 the last sum consists of at least two terms of various orders, which 
explains why the series is not ordered according to increasing powers of n-1'2.

Transcribing (4.12) in the same manner we get Edgeworth’s version as

DC

m = l

m

5>(”,+2s) (o £<?,(«•).
S=1

(4.15)

Edgeworth does not summarize his results by presenting the two general ex
pressions (4.14) and (4.15) but the formulas are clearly implied by his presenta
tion of the first terms of the series.

It is clear that Edgeworth’s result holds whether the support of the distri
butions is finite or infinite if only the moments of the components of sn are of 
the order indicated in (1). Likewise, the law holds for a linear combination of 
components instead of a sum. Generalizations to non-linear functions and to 
correlated components are discussed by Edgeworth (1906), who concludes that 
the law holds for these cases if the standardized cumulants are small and decreas
ing, although not necessarily as n-1'2, n-1,.... However, he does not reach a 
general result for these cases.

Applications and discussions of the Edgeworth series compared with 
other systems.

In the 1906 paper the first three terms of the series are fitted to three sets of 
data, not very abnormal, the analysis being carried out by Bowley. The goodness 
of fit is comparable to that obtained by fitting a four-parameter Pearson curve. 
Edgeworth also presents some diagrams showing the effects of varying 71 and 72.

After having discovered the works of Thiele, Bruns and Charlier, Edgeworth 
(1907) points out that his series represents the distribution of aggregated random 
variables, whereas the other authors aim at approximating a given frequency 
function by a suitably chosen series. Moreover, the “Bruns-Charlier” series differs 
from his series in the third and following terms.
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From 1895 and for the rest of his life Edgeworth carried on a polemical dis
cussion on the advantages and disadvantages of his system of distributions (the 
generalized law and the method of translation) compared with Pearson’s system, 
for a summary see Edgeworth (1917, pp. 411-437). He repeatedly underlined 
that the generalized law of error is based on the physical hypothesis that ob
served quantities in many fields depend nearly linearly on the effects of many 
independent causes and therefore has the status of a law of nature, whereas 
other systems of distributions are merely empirical. However, he added that the 
generalized law describes only moderately abnormal distributions, so that the 
more flexible empirical systems are important practical supplements.

In the applications of the series as a frequency function Edgeworth uses at most 
three terms. He notes that this may lead to negative frequencies in the tails of 
the distribution. He (1924) summarizes the results of a lifelong work with fitting 
this formula to 19 empirical distributions by listing the values of the skewness 
msm2 , which varies from 0.063 to 0.29, and the kurtosis — 3, varying 
from —0.051 to 0.327, for slightly and moderately abnormal cases. If the two 
coefficients are calculated from a sample of N observations their standard errors 
are of order N-1^2 and TV-1, respectively, whereas the coefficients themselves 
are of order n-1'2 and n-1, where n is the unknown number of components.

K. Pearson (1857-1936), from 1884 Professor of applied mathematics and 
mechanics at University College, London, based his model (1895) on the hyper- 
geometric distribution, that is, Pearson’s sn is the sum of n negatively correlated 
binary variables. Edgeworth points out that this model is too special as the 
basis for a general theory of distributions for sums of interdependent variables. 
It seems that Pearson reached the same conclusion because he (1905b) writes 
that “all discussion of asymmetrical frequency must turn in one form or another 
on the proper form to be given to F(x) in the equation

1 dy = -x n 
y dx (TqF(x) ’

Setting F(x) — ao + aix + a2X2 +... and disregarding terms of higher order Pear
son obtains his system of frequency curves, y — y(x), without reference to urn 
models and underlying causes. In the same paper Pearson criticizes Edgeworth’s 
method of translation.

Yule (1906) used the opportunity at the discussion of Edgeworth’s (1906) 
paper to defend Pearson’s original idea. He argues that Edgeworth has not 
reached the bottom of the problem because the distributions of the components 
are unspecified, and he asks the question: How did these distributions arise? 
He answers that “he would regard every distribution as being built up from a 
series of such elements, each capable of taking only one of two values. That was 
the general process, of which the special processes adopted by Quetelet, Pearson, 
and others were particular instances.” Moreover, Edgeworth’s “process of analysis 
into elements was purely mental; you could classify the elements out of which 
any variable was built up in an indefinite number of ways.” Edgeworth answered 
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that “The fact that sporadic variation was widely prevalent might legitimately 
be used as the foundation of a theory, though the ultimate causes underlying 
that fact were imperfectly apprehended.”

Pearson read widely and in some cases superficially to judge from the follow
ing two examples. In a Note at the end of his 1895 paper Pearson remarks that 
he has procured and read Thiele’s (1889) Danish textbook. He notes correctly 
that Thiele has introduced the cumulants and measures of skewness and kurto- 
sis similar to his own but he overlooks Thiele’s discussion of the A series. He 
remarks that Thiele does not use the cumulants for estimating the parameters 
in frequency functions although Thiele calculates the first six cumulants for his 
example from which the coefficients of the A series may be calculated, see Table 
1. Pearson’s mistake is presumably due to the fact that Thiele did not calcu
late the corresponding frequencies. On the other hand Pearson correctly relates 
Thiele’s discussion and application of the B series and shows that a somewhat 
better fit than the one recorded in our Table 1 may be obtained by his four- 
parameter Type I distribution. Pearson (1905a) criticizes Thiele and Lipps. He 
suggests that their purpose is “to reproduce the complete frequency” by inclu
ding as many terms of the series as there are classes minus one. He warns against 
this procedure, partly because the problem is graduation, not interpolation and 
partly because of the large sampling errors of the higher moments. However, this 
is exactly the arguments of Thiele and Lipps; in their applications they do not 
use moments of higher order than six. Pearson does not in this context mention 
the applications of the four-parameter Edgeworth series due to Edgeworth and 
Bow ley.

Among British statisticians only Bowley used the Edgeworth series as a fre
quency distribution; in his textbook (1926) he gave a simplified version of Edge
worth’s proofs and used the first two terms of the series as a skew distribution.

A compact summary of the results of Thiele and Edgeworth, without reference 
to these authors, is given by Cornish and Fisher (1937) together with two new 
applications of the series. They derive unbiased estimates of the cumulants and 
give an expansion of the percentiles of g(x) in terms of the standardized normal 
percentiles by inverting the relation between the distribution function of x and the 
corresponding Edgeworth series. A supplementary paper by Fisher and Cornish 
(1960) gives further formulas and tables.

Barton and Dennis (1952) determine the region in the (Ai, A2)-plane within 
which the four-parameter series is unimodal and positive, see also the improved 
version by Draper and Tierney (1972).

5 The Swedish School

It was rather late in his career that C. V. L. Charlier (1862-1934), Profes
sor of astronomy at the University of Lund, became interested in mathematical 
statistics. His main ideas and results on the A and B series are contained in 
five papers published between 1905 and 1908. It seems that he was ignorant of 
most of the literature on these topics when he wrote the first two papers. In the 
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third paper (1905c) “On the representation of arbitrary functions” he refers to 
Gram and Thiele and remarks that he in November 1904 visited Bruns in Leipzig 
and that he considers his own paper as a generalization of Bruns’s work. It is, 
however, better characterized as a modification of Lipps’s paper (1901), which 
he surprisingly did not know.

We shall sketch the contents of the five papers and also make some remarks 
on the special cases and examples discussed in the following papers. In a survey 
paper Charlier (1914) lists 19 papers as his “Contributions to the mathematical 
theory of statistics” so far; many of these papers contain improved versions of 
the original proofs and are mostly didactic.
(1) Charlier’s probabilistic derivation of the normal A series, 1905a.

Referring to Hagen’s hypothesis of elementary errors Charlier derives (1.4) by 
means of the characteristic function for a sum and the inversion formula. His 
proof is essentially the same as Poisson’s (1824), which he presumably knew from 
Todhunter (1865). His proof contains two errors that neutralize each other; he 
points out the error in his 1914 paper. There is nothing new in this paper, both 
the method of proof and the results were well known.
(2) Charlier’s probabilistic derivation of the B series, 1905b, 1908.

Let Xj , j = 1,2,... , be independent random variables taking on the values 0 
and 1 with probabilities qj and pj, respectively, p3 + qj = 1. Laplace (1812, II, 
§38) shows that the characteristic function for s = Xi + ... + xn equals

^(t)=II(qj+pjelt), (5.1)
j=i

and by means of the inversion theorem he proves that s is asymptotically normal 
with mean Spj and variance Upjqj. The same result is obtained by Poisson 
(1837, §109).

It is well known that Poisson (1837, §81) derived the distribution

fx(x) e~xXx/x\, z = 0,1,...,

from the binomial for np = A, 0 < A < oo, and n oo. The characteristic 
function for the Poisson distribution is

OO 
e~A ^2 ><xeixt/x\ = exp(—A + Aei4).

a:=0

Charlier considers the limiting distribution for the model with varying proba
bilities, often called Poisson trials.

Setting E(s) = — A,0 < A < oo, so that p3 = O(n_1) and using (5.1)
Charlier gets

ln^(i) = 52[lnQj + ln(l + (pj/qj)eit)] 

= ^[-Pj +

= -A + Aeft + ... .



50 Anders Hald MfM 49

Hence,Charlier finds that s is asymptotically Poisson distributed with parameter 
A. By means of the inversion formula he writes the limit distribution in the form

exp( —A + Xelt — ist) dt

- A + A cos t + z(A sin t — st)] dt

——e x [ eAcost cos(Asint — st) dt, 
Jo

s = 0,1,... . (5-2)

In his enthusiasm for this result Charlier writes: ‘‘This is the function which in 
the present case plays a similar rôle as the Gaussian distribution in the usual 
theory of errors.”

Next, he extends the definition of p\(s) from non-negative integers to “arbi
trary real or imaginary values of the argument.” To study the properties of this 
function he notes that

sin 7vs
7TS

and developing px(s) in Maclaurin’s series he obtains

Using that

he gets the expansion

, -x / smTTSPo(s-j) = (-1)J —-------
7T(S - J

1
(5-3)

It follows that
0

(5.4)
for s = — 1, —2,...

The function px(s) may thus be called a continuous version of the Poisson dis
tribution.

Charlier does not discuss the properties of px(s) further. However, the function 
may be considered as an interpolation formula based on the values given by (5.4), 
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which shows that p\(s) for s < 0 alternates between positive and negative values 
in successive intervals of unit length. Hence, px(s) is no frequency function, the 
connection with the original model is lost and the function has no probabilistic 
interpretation.

Charlier was not the first to invent a continuous version of a discrete distri
bution. Thiele (1903, p. 21) proposes to write the binomial coefficient in the 
form

r(n + 1)
r(s + i)r(n — s +1)
sin7TS T(n + 1)

7FS (n — s)... (1 — s) ’
—oc < s < oo , s =|= 1, 2,... , n.

He remarks, however, that the corresponding continuous version of the binomial 
is inadmissable as a frequency function because it alternates between negative 
and positive values periodically for s < 0 and s > n.

Finally, Charlier remarks that the complete expansion of ln-ø(t) is

n oo n
lnV>(t) = £(ln9,+fe/9j)e“]+ E -e“’"Eto/«^’n’ 

j = l m=2 1=1

which for n —> oo shows that

In V>(i) = —A + Xelt + a linear combination of eltm , m — 0,1,... ,

the first two coefficients being of order n 1 and the following of order n1 m
Since

1
27T

exp(—A + Xelt — ist)eltrndt = px(s — m)

the complete expression for p(s) has the form

oo

p(s) = 52 ~
m=0

oo

m=0

(5.5)

which is Charlier’s first derivation of the B series. He does not discuss how the 
coefficients depend on A.

In 1908 Charlier realized that his enthusiasm for the function p\(s) as a means 
for describing distributions with positive frequencies for s < 0 was unfounded. 
He explains that this is due to the fact that the elementary errors are assumed to 
be non-negative and he therefore generalizes his previous model by considering 
a trinomial error distribution instead of the binomial. Let Xj take on the values 
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— 1,0,1 with probabilities pij, qj,p2j, respectively, pij + qj + P2j = 1, assuming 
that pij and p2j are of the order n_1 and p2j pij, say. Charlier states that the 
same method of proof as above leads to the “auxiliary function”

1 I'77Px,Js) = —e~x / eAcost cos(/zsint — st) dt, — oc<s<oc. (5.6)
Jo

He remarks that px.^(s) > 0 for s = — 1, —2,... , and indicates that he on a later 
occasion will return to a more detailed study of this function. However, he never 
did so, it seems that the mathematical and numerical problems were too difficult. 
We shall return to this matter under (6).

To see how the parameters depend on the error distribution we shall derive 
(5.6) under the assumption that the error distribution is the same for all the 
components; the proof in the general case is the same.

Setting np2 — npi = p and np2 + npi — À we get E(s) = p and

var(s) = np2 + npi — n(p2 - Pi)2 — A - p2/n .

It is easy to prove that ^2r_i(s) —> p and /t2r(s) —> A, r = 1, 2,... , for n —► oo. 
From the characteristic function

W) = (pie_ît + q + P2elt)n

we get

ln^(t) = nhiq + nln [1 + (pi/g)e_ît + (p2/Q)e^]
= —A + npie~lt + np2elt + ...
= -A + lA(e“ + e-i,) + lp(e“-e-i,) + ...

1 J = 0,1,...
= r = 01i

= — A + A cost + ipsint + ... ,

from which (5.6) immediately follows by means of the inversion formula. Hence, 
p is the mean and A the variance of s, s — 0, ±1, ±2 for n —* oo.

For p = A we have Pa,^(s) ~ Px(s), which for s = 0,1,... equals the Poisson 
distribution. Like Jørgensen (1916), we shall therefore call px4lJs) the Poisson- 
Charlier distribution.

(3) Charlier’s representation of an arbitrary function by the A series, 
1905c, 1906.

Charlier (1905c) writes the A series as g(x) = Scj/^\rr) and determines the 
coefficients by the method of moments using (1.12) with
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Integration by parts gives the recursion formula vrj — —which leads to

— ( 1)^^—j',0 — ( Fr—j ,

where
Fr = —}[ xrf(x)dx, r = 0,1,....

• J — oo
Moreover, vrj = 0 for j > r.

Hence, (1.12) leads to
r

Hr = , r = 0, 1,...,
J=o

which shows that the c’s are determined successively as linear combinations of 
the /i’s with coefficients that are independent of g(x). Charlier therefore writes

•oo

(5-7)?

oo

where

so that

(5-8)
0 for j < r
1 for j = r ,

Sr(x) = sr0 + Sriæ/1! + sr2X2/2\ + ... + srrxr/r\.

Inserting the series for g(x) into (5.7) Charlier obtains
oo »,

Cr = C3 /
J=o J -

Z
oo

Sr(æ)/^\a;) dx =
-oo

which leads to the equations
r

( 1)^ ^k—jSrk =
fc=0

0 for j = 0,1,... , r — 1
1 for j = r ,

for the determination of {srfc}. These equations may be written in matrix form
as

/F0 0 $rr
Fl P0 • 0

X
&r,i—

=
0

\Fr Fr-1 ■ • F0 / k 0 )

(5-9)

Charlier uses determinantal expressions instead of the matrix form above. He 
works out the explicit expressions for Sr(x) for r = 1,... ,4 and gives the recur
sion formula

$rk — Sr—l,k—l i — 1, . . . ,T. (5.10)
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The problem of determining the coefficients in Charlier’s A series is thus for
mally solved by means of (5.9) and (5.7). If more than four terms are needed 
(5.10) may be used for calculating further values of Sr(rr).

As a special case Charlier sets /(x) equal to the normal density and derives 
the first six coefficients. He observes that Sr(x) ex Hr(x) and that his results 
previously have been found by Gram, Thiele, and Bruns. He overlooks that Lipps 
(1901) had formulated the same general model and given the complete solution 
for the normal case, see (3.19) (3.20).

As a second special case Charlier sets

and determines the first four coefficients of the expansion.
In a following paper he (1906) presents the formulas for the normal A series 

and gives detailed schemes for the calculation of the parameters. He illustrates 
the theory by five examples.

(4) Charlier’s representation of an arbitrary function by the B series, 
1905c, 1906.

Charlier’s procedure is analogous to that for the A series. He writes the B 
series as g(x) = ScjVJ/(x) and determines the coefficients by the method of 
moments using (1.12) with

~ J =0,1,...
= 52 r = 0,l,.

x= — oc

To express vrj in terms of zy = Hxr f(x) Charlier uses that

V ('izæ'izæ ) — uxVvx T vx—]^ux ,

which sums to zero under the assumption that uxvx —> 0 for |a?| —> exx Hence,

5 Uj: V X x — H x— 1 dx ,

so that
52 xrV] f(x) = — 52 VJ-1/(x — 1) VaA .

Repeated applications of this formula give

= (-1)J 52/(^ - j)VJa:r
= (-!)J J2/(4:) VJ(x+j)r , j = 0,1,... ,r,

and i/rj = 0 for j > r, which shows that prj is a linear combination of z/o, ^1, • ■ • , 5 
where zy. = Hxr f(x).
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It thus follows from (1.12) that the c’s are linear combinations of the p's with 
coefficients that are independent of g(x). Charlier writes

oo

Cr = 22 ^(^(z),
x=—oo

(5.11)

where
T'r^x') = trQ T tr±x —... —trrxr .

Inserting the series for g(x) in (5.11) he finds that

22Tr(z)VJ/(^) = 0 for j < r ,
1 for j — r , (5.12)

which leads to the equations

r

2 Fr—k,jtr,r—k =
k=0

0 for j =0,1,...
1 for j — r .

r - 1,
(5.13)

The matrix of coefficients is lower triangular so that the t’s are linear combina
tions of the prj, j = 0,1,... , r, which may be expressed as linear combinations 
of Pj, j = 0,1,... , r. Charlier derives the four polynomials Ti(z),... , Ti(x) and 
using (5.11) he finds the first four coefficients in terms of the moments of g(x) 
and f(x).

He remarks that if f(x) contains m disposable parameters then we may use 
them to make m coefficients disappear. He uses this idea in his first example 
which is a discussion of Pearson’s (1895) approximation by means of the binomial 
to an asymmetrical frequency function. The B series is

#(*) = 22cjvJ^ O » a>°’
where

77 ’
™ = (6+ *)!(„-6-’ O<b + X<n,

and f(x) = 0 otherwise. Suppose that a,b,p, n have been chosen such that 
Ci = ... = C4 = 0. We then have

= +C5 22XrV5/(f) +•••
= ar(covr + c5pr5 + ...), r = 0,1,... ,

where
z/r = 22 xrf(x) = 22^ + b)rf(x + 6),

which are the well-known moments of the binomial. Charlier thus finds that the 
four parameters a, b,p, n must satisfy the four equations pr = arpr, r = 1,... ,4, 
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in agreement with Pearson. He remarks that the following terms of the B series 
give a “correction" to Pearson’s result but he does not determine these terms.

He (1905c, 1906) then turns to his main result: The Poisson B series. After 
having found as function of A he determines the first four coefficients from 
the general formula with the result that cx = A — ^ux,

2!c2 = A2 — (2A + l)/zx + M2 ?
3!cß = A3 — (3A2 + 3A + 2)^zx + 3(A + l)/i2 — M3 ,
4!c4 — A4 — (4A3 + 6A2 + 8A + 6)/zx + (6A2 + 12A + 11)^2 — (4A + 6)/Z3 + /z4 ,

(5.14) 
where

Mr = ^xr g(x), r = 1,2,... .

He derives the simpler formulas obtained by setting A = /ix and introducing the 
central moments.

Finally, he introduces two more parameters, a and b say, by replacing g(x) by 
g(ax + 5). He derives the first four terms of the series for the following special 
cases: (1) Setting a = 1, he chooses b and A such that cx = c2 = 0. (2) He 
chooses a, 5, A such that a — C2 = C3 = 0. (3) He chooses a and A such that 
Ci = C2 = 0. He fits a B series to three sets of data.

To facilitate the use of the B series he (1906) reproduces Bortkewitsch’s (1898) 
table of the Poisson frequency function.

Regarding the Poisson B series Charlier was preceded by Lipps (1901) who 
gave the elegant formula (3.17) for the coefficients. Charlier’s achievement lies in 
the derivation of the polynomials Tr(x) for the general B series and the orthogo
nality relation (5.12).

(5) Charlier’s applications of the series to the Bernoulli, Poisson, and 
Lexis models, 1909, 1911.

Charlier (1909) derives the first six cumulants of the binomial distribution 
and the usual A series approximation may thus be found, see (2.13). However, 
Charlier wanted to improve this result and developed a slightly different series.

Setting

and introducing the auxiliary function

-ø(t) = pelt + qe , 

n

x—0

he observes that
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so that
b(x,y) =

where «(t) = In V>(t), Ki = p — q, «2 = 4pg.
Setting v = x — np and n2 = npq, he finds

(5.15)

oo

n/î(t) — it(x — y) = —2a2t2 — 2vit + n Kj(zt)J/j!.
J=3

The main term of the expansion becomes

(5.16)

which for n2 —* oo tends to normality. The improved series is

OO
5(æ,?/) =/(v) + J2cj/Ü)(v), v = x-np, (5.17)

j=3

where the coefficients are the same as for the normal A series. He calls this the 
“strict” form and recommends it when cr2 is small. It seems that nobody has 
used it.

To obtain the B series he sets np = A and finds that

n«(t) — it(x y) — —A(1 — e2ît) — 2itx — n
OO 1
£y(l-e2it)< (5.18)

Using (5.15) the main term becomes p\(x) and the series becomes the ordinary 
Poisson B series (5.5), but in the present case he is able to find the coefficients 
because of the simple form of (5.18). He does not use (5.14), presumably because 
C5 and cq are rather complicated.

Charlier finds the first six coefficients in the usual way by identifying the 
coefficients of t in two power series. We shall show how the general formula may 
be derived from Lipps’s formula (3.17). Noting that

aj = rS^p? /j\

= (?/>!) Et-1)3“Dy = O‘0(“i)/W. Do3=0,
fc=0
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we get

~ È ( •)
j=0 k=0

= £(-i)’-'=A-y£(-irf r )or_fc_3,r_3

= £ (-i)-^-V £'(-1)4 20D-fc-’- ’̂ <5-19)

fc=[r/2] j—0 ' J'

because the last sum equals zero for k < [r/2], Since the D’s are tabulated the 
c’s are easily found. For example, for r = 6 we get

D36 - QD25 + 15D14 = 225 - 6 x 50 + 15 x 6 = 15,

D26 - 6D15 = 274 - 6 x 24 = 130, D16 = 120,

so
6!c6 = —15A3p3 + 130A2?4 - 120Ap5 ,

in agreement with Charlier.
It follows from (5.19) that cr for r > 3 consists of several terms of different 

orders of magnitude since p is of the order n~1. Charlier extends Edgeworth’s 
discussion of the order of magnitude to the B series.

Referring to Edgeworth, Charlier notes that the series may be written in a 
symbolic form analogous to that for the A series, namely

—ng(x) = exp Px(x).

In the following paper (1911) Charlier employs the results for the Bernoulli 
model to the models of Poisson and Lexis, which so far had been discussed only 
in terms of the mean and the variance. He derives the third and fourth moments 
for use in the improved A series and the B series.

(6) Jørgensen’s analysis and implementation of the Poisson-Cliarlier 
distribution, 1916.

The Danish actuary N. R. Jørgensen (1879 1967) took up the challenge in 
Charlier’s 1905b and 1908 papers by providing a complete theory for the two 
new distributions and the corresponding series. His contributions are contained 
in a theoretical paper (1915) and his thesis “Investigations of frequency surfaces 
and correlation” (1916, 208 pp.) The title of the thesis is incomplete because the 
first 51 pages contain an exposition of the univariate theory and the last 72 pages 
contain a comprehensive set of tables for the calculation of the A and B series 
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and the corresponding distribution functions. We shall sketch his main results 
for the univariate case.

Noting that
sin 7vx

Poo (x) = ------- ,7rrr
and using the derivatives of exp\^(x) with respect to À and ft he derives the 
Maclaurin series

0 E ft E A, which for integral values of x becomes

This is a new discrete distribution which Jørgensen calls the Poisson-Charlier 
distribution. It is positive for all values of r, tends to zero for r —> oo, its mean 
is ft and its variance A, for // = A it is the Poisson distribution, for ft = 0 it is 
symmetric and otherwise skew, and for large values of ft and A it tends to the 
normal distribution.

Introducing the Bessel function of the first kind, Jr. Jørgensen writes (5.21) 
as

PA,M(r) = e-A(Å + M)rFr(t), i = (A2-p2)1/2, r = 0,±l,..., (5.22)

where
Fr(t) = Jr(it)/(zi)r .

He tabulates logFr(t) to seven decimal places for r = 0,1,... ,11 and t = 
0.0(0.1)6.0, so that the values of px,p(r) are easily calculated.

Similarly he writes (5.20) as

Finally he expresses the relation between (5.23) and (5.22) as

Px,p(x) = E sin7r(a? — r)
7r(æ — r) Px, ptf)

r=—oo
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which shows that Px,n(x) is a weighted average or the expectation of poo(x — r) 
with PA,M(r) as weight. Hence, for large absolute values of the standardized 
variable (x — p)/y/X, px ^(x) takes on (small) positive and negative values pe
riodically. He remarks that the continuous version may be considered as an 
interpolation formula based on the discrete version.

He tabulates the functions

sin7T3? , /' sni7ra: ,------- and / ------- dx
TTX Jq 7TX

to seven decimal places for x = 0.00(0.01)10.00.
Jørgensen’s main tool in the following analysis is Thiele’s cumulant generating 

function. He finds

extpx^{x) dx

— exp jA(eÉ + e ‘ -2) + |p(e' - e *)

so
^p(i) = A(i2/2! + t4/4! + ...) + /z(t/l! + t3/3! + ...),

which shows that A/p(0) = 1 and that the cumulants of even and uneven order 
equal A and /z, respectively.

The B series is
rc . i

= 5Z(-i)J —'Cj^px^x) ■ 
j=0 J-

It is easy to prove that

extVJpx,n(x) dx = (1 - et)-’Mp(i),

so that the moment generating function for g(x) becomes

1

J=o

Hence,
%(*) - *p(t) = ln^2(-l)Ji(l - ,

j=o ]-
which leads to

(«1 - /i)t + (k2 - A)t2/2! + (k3 - /z)t3/3! + («4 - A)t4/4! + ...
= C\t + (ci + C2 — c2)i2/2! + (ci + 3c2 + C3 — 3c2 — 3ciC2 + 2c3)t3/3! + ... , 
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from which the c’s are found in terms of /z, X and the cumulants of g(x).
Setting g = Ki and A = «2 Jørgensen gets Ci = C2 — 0 and C3 = K3 — Kq. 

Continuing we get C4 = «q —K2 —6(^3 —«q). Jørgensen points out that C4 becomes 
«4 — «2 if central differences are used in the expansion instead of backward 
differences.

Referring to the hypothesis of elementary errors Jørgensen points out that for 
the series with /z = «q,C2 is of order n_1, C3 and C4 of order n~2, C5 and cq of 
order n-3, in accordance with Charlier’s result for the binomial, see (5.19).

Jørgensen maintains that applications of the B series by means of his tables 
are just as easy as applications of the A series. He demonstrates this by analysing 
three sets of data, previously analysed by Pearson, Charlier and others, compar
ing the graduated values by his method by those obtained by a type A series and 
a Pearson distribution. In the applications the origin of x should be chosen such 
that 0 /z A for the formulas to be directly applicable.

He finds the existing tables for calculating the A series unsatisfactory and he 
therefore tabulates the normal density ø(æ), its integral and its first six deriva
tives to seven decimal places for x = 0.00(0.01)4.00. Moreover, he tabulates the 
Hermite polynomials of order 2 to 6 for the same arguments.

Jørgensen ends by saying that there are two unsolved mathematical problems 
in his thesis: The convergence of the series and the justification of the operations 
leading to the cumulants. However, in statistical applications only a finite number 
of terms is used and the usefulness of the series should be judged from the 
goodness of fit.

Another Danish actuary, J. F. Steffensen (1873 1961), from 1919 Professor 
of Actuarial Mathematics at the University of Copenhagen, proved (1916) that 
Afp(t) diverges so not even the first moment of p\4l(x) exists. Jørgensen’s formal 
operations leading to the cumulants are thus invalid. This seemed to be a serious 
blow to the applications of Jørgensen’s results for how could one estimate the 
coefficients by the method of moments when the theoretical moments do not 
exist? We have not found any reply from Jørgensen, but the answer is simple. 
The “defect” refers only to the continuous version of the distribution, for the 
discrete version the moments exist. Jørgensen’s successful fittings of p\^(x) to 
data depend on the fact that for a grouped continuous distribution the areas are 
replaced by ordinates so he really fits the discrete version to the data even if he 
afterwards interprets the result as a continuous distribution.

We conclude that Charlier’s derivation of p\^(x) from the hypothesis of ele
mentary errors led to a new discrete distribution but that his extension to the 
continuous version was a failure. The reason for this is not that the moments do 
not exist but the fact that the continuous version is not a frequency function and 
therefore should not be used as a first approximation to an arbitrary frequency 
function.
(7) Charlier’s C series, 1928.

Charlier (1928) remarks that the A series has the defects that its partial sums 
sometimes give negative frequencies and that the successive terms of the series 
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do not decrease regularly. However, by developing the logarithm of the density 
in a series instead of the density itself these defects are remedied. He defines the 
C series as oo

In <7(2:) = Cy//j(u), u = (x — /r)/cr, (5-24)
j=o

and compares this series with the A series in standard form
oc

#(x) = CT_10(u)[l + ^aJHJ(u)] ,
J =3

from which he gets

In g(x') = — In er — ffolnÆ-itfo-

(5.25) 
Expanding the last term in powers of Hj and expressing these powers as linear 
combinations of the H's he gets (5.25) written as a linear combination of H's, 
which compared with (5.24) gives the c’s as functions of the a's. In this way he 
derives the first nine c’s, and since the order of magnitude of the a’s is known, 
he can find the order of the c’s, which are cq = = 0(1), ci = O(n~3/2) and
Cj = j = 3,4,... ,9. He conjectures that the last relation holds for
all j A 3.

Using the orthogonality of the Hermite polynomials he finds

1 f°°
cj — ~i I Hj (u) In g(x} du . 

J • J — oo

He gives two examples of fitting a C series to large data sets.
Charlier’s conjecture about the order of magnitude of the c’s was proved by 

Aitken and Oppenheim (1930). They remark that estimates of the c’s will be 
much influenced by the large negative values of the empirical lng(æ), which may 
occur at extreme values of x, because the corresponding relative frequencies are 
small and unreliable.

(8) Cramér’s completion of the theory for the normal A series and the 
Edgeworth series, 1926a, 1928.

The analysis of the normal A series and the Edgeworth series for a continuous 
distribution function culminated with the works of H. Cramér (1893-1985), Pro
fessor of Actuarial Mathematics and Mathematical Statistics at the University 
of Stockholm, the results are summarized in his textbook (1946, pp. 221-231). 
After a preliminary paper (1926a), he published the important 1928 paper, which 
contains four main results: (1) the determination of the coefficients of the two 
series, (2) conditions for the convergence of the series, (3) conditions for the re
mainder term of the Edgeworth series to be of the same order as the first term 
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neglected, and (4) fitting of the two four-parameter partial sums of the series to 
five large data sets. The proofs under (2) and (3) are mathematically difficult 
and Cramér’s paper induced other probabilists to look for simpler proofs.

We shall sketch Cramér’s elegant derivation of the normal A' series and the 
Edgeworth series for the case of equal components. Let the cumulants of Xj — 
E(xj) be ki,K2,..., and let V’i(^) be the characteristic function for Xj — «i so 
that the characteristic function for the standardized sum

equals
ÿ(t) = ^(t/y/nR^).

Cramér remarks that the A series is obtained by expanding ■ø(t) in powers of 
t whereas the Edgeworth series is obtained by expanding the same function in 
powers of n-1/2.

Setting Xj = Rj(R2)~:i'2, so that Ai = 0, and A2 = 1, he obtains the two 
expansions

oo

lnV’(t) = —12/2 + n^^(Xj/j!)(it/y/ny (5.26)
j=3

and
OO

ln-ø(t) = —12/2 + (it)2 ^Jn~^2Xj+2(it)j+2/(j + 2)!. (5.27)
j=i

Noting that the logarithm of the characteristic function for the normal A series 
equals

OO
-t2/2 + ln(l + ^2cj(-it)J/j!),

J=3

and comparing with (5.26) he gets the generating function for the c’s in terms 
of the cumulants, that is, he rediscovers Thiele’s formula (2.18). He does not as 
Edgeworth go on to find the explicit formula for the c’s, see (2.19) and (4.13).

To find the coefficient of rt~E2 in the expansion of ty(t) Cramér uses (5.27) to 
get

fc

which shows that the coefficient of n J/2 exF>(—t2/2) is of the form 

k=X
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Using the formula

/
oo

(u)
-oo

du,

he obtains the inversion

oo j
+ y^(-l)Jn~j/2 ^2 bjdA2k^j+2k\u). (5.28)

j=i k=i

Writing tr for ( — iy<p^r\u) Crainér observes that the coefficient of n~^2 is a 
polynomial in t. Pj(t) say, with the generating function

OO

1 + Pjftyi = exp
5=1

OO
£>>+2e+2V/(j + 2)!
5 = 1

(5.29)

It will be seen that Cramér’s (5.28) is the same as Edgeworth’s (4.12) and 
(4.15), and that (5.29) is the same as (4.11) for — D = t.

Although Cramér with respect to the derivation of the two series did not 
produce new results or a new method of proof his paper had a great influence 
because of its straightforward mathematics and clear formulations compared with 
Edgeworth's somewhat obscure exposition.

In contradistinction to Lipps (1901), Cramér (1928, p. 156) (rashly) writes: “In 
some cases, the agreement between the observed values and the theoretical curves 
[the Edgeworth series] is even so striking that it strongly suggests the conjecture 
that the fundamental hypothesis may contain something which resembles the 
actual truth.”

(9) Wicksell’s derivation of the B series, 1935.

S. D. Wicksell (1890-1939), Professor of Statistics at the University of Lund, 
simplified the theory for the general B series by introducing factorial moments 
and cumulants. Let g(x) and /(æ), x = 0,1,... , be frequency functions and set 
g(x) = f(x) = 0 for x = — 1, —2,.... Wicksell (1935) introduces the probability 
generating functions G(t) = Siæp(x) and F(t) = EC/(x) and the generating 
function for W/(x) which equals (1 — ty F(t). By means of Maclaurin’s formula 
he gets

OO
G(l-<)/F(l-i) = ^cJt7j!, c, = .DW - i)/-F(l ~ t)l<=o , (5.30)

5=0

OO
G(t) = £c3(l-t)2F(t)/j!,

5=0

so that
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which implies that oo

j=0

Having thus found the B series for g (a?) in terms of f(x) he derives various 
conditions for the convergence of the series.

To find a more manageable expression for Cj than (5.30) he uses the Maclaurin 
expansion

OO
l/F(l-t) = £>^/j!, aj = D>[l/F(l-t)]1=0, 

j=0

which inserted into (5.30) gives

OO oo

G'(1 ~ = ’ (5-31)
j=o j=o

so that Cj equals the jth derivative of the left side for t — 0.
However, G(1 — t) is the generating function for the descending factorial mo

ments,
OO

G(1 - 0 = = 22(-l)fc/r(fc)tfc/Å;!,
x k=0

SO

0^(1-t)|(=0 =(-!)%)■

Using Leibniz’s formula for differentiating (5.31) Wicksell obtains

q = > = 1,2,..., (5.32)

which shows that Cj is a linear combination of the factorial moments of g(x) with 
coefficients depending on the factorial moments of /(æ). Wicksell does not find 
the a’s, but differentiating the relation

OO

j=0

we get
£(-1)^^.,, =0, j = l,2,..., (5.33)

which gives a recursion formula for the determination of aj in terms of the fac
torial moments i/qp... , i'(j) of f(x).
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Although Wicksell’s formula for Cj in terms of factorial moments is consider
ably simpler than Charlier’s (5.11) in terms of power moments, it is still rather 
complicated for j 4. Wicksell therefore looks for a recursion formula, which he 
finds by introducing factorial cumulants defined by the equation

oo
lnG(l -t) =

j=i

so that the relation between the factorial cumulants and the factorial moments
becomes

(5.34)

analogous to the relation between ordinary cumulants and moments. Denoting 
the factorial cumulants of f(x) by A(j), j = 1, 2,... , it follows that

Since Thiele’s recursion formula for the cumulants,

obviously holds also for the factorial cumulants. Wicksell gets the recursion for
mula

which corresponds to the recursion formula for the coefficients in the A series 
derived by Thiele (1889), see Hald (2000a).

This result may be used to write the B series in a form analogous to the A 
series by setting

— «(j+2) - \j+2) > j = 0,1,...
see (2.13).

Wicksell illustrates his method by several examples. Considering the expan
sion of g(x) in terms of the Poisson distribution he finds 1/F(1 — t) = exp(At) 
and thus = A-7 so that (5.32) gives
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which is a considerable simplification of Charlier’s result (5.14). Wicksell believes 
that his formula is new, it is however due to Lipps, see (3.17), and it had also 
been derived by Ch. Jordan (1927, p. 39). As a special case he finds the B series 
for the binomial (n,p) using that = n(k)pk and A = np, a result also found 
by Jordan (1927, pp. 39, 99). Wicksell also derives the recursion formula

j-i
cj = -np^(j - l)(fc)pfcCj_i_fc , ci = 0, j = 2,3,... .

k=l

Finally, Wicksell gives a comprehensive discussion of expansions with /(rr) 
equal to the binomial (n, p) using that

aj = (n + j - 1)°M , j = 1,2,....

He discusses the Bernoulli, Poisson and Lexis models and moreover the hyperge
ometric and Pascal distributions. In each case he gives the explicit formula for 
C>.
(10) Andersson’s derivation of the A and B series, 1944, and his appli
cations of the Gram series, 1941, 1942.

The final refinement of the derivation of Charlier’s two series is due to the 
Swedish actuary W. Andersson (1903-1984). Using a modified version of Wick
sell’s method, Andersson (1944) shows, like Charlier, how both series can be 
derived by the same method, the simplification is obtained by using moment 
generating functions and cumulants instead of ordinary moments.

For a continuous distribution we have
oc oo

Mg(t) = eXP(^2^^7j!) >
j=0 j=l
oo oo

/j\ = exp(^2 OTO »
j=0 j=l

so that the Maclaurin expansion of the ratio gives

= (5.37)
J=o

Replacing t by it and using the inversion formula Andersson finds the A series
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The new expression for Cj compared with Charlier’s formula (5.7) implies that

= .DJ[ex*/Mf(O]t=o • (5.38)

Setting
oo

W/(i) = aj = D3[l/Mf(t)\t=0,
j=o

and using Leibniz’s formula Andersson Ends

SAX) = S ^k)xk(l3-k = ^2sjkXk/k\,
fc=0 ' ' k=0

so that
sjk=jWaj-k, fc = 0,1,... ,j,

where aj is found recursively from the formula

which corresponds to (5.33).
Introducing the cumulants into (5.37) we have

and setting t = —D Andersson obtains the symbolic expression for the A series

which previously had been derived by Thiele (1899) by another method. 
From the recursion formula for the cumulants Andersson gets

(5.39)

For a discontinuous distribution Andersson sets Af(t) = E[(l + t)x] so that 

Mg(t) = /j- = exP
J=o

OO

j=i

M/7) = = exp
j=o

OO

J=1
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and
oo

= c, = Di(M!I(i)/Af/(t)]t=o. (5.40)
j=0

Noting that

N ev/w = (-i)-nt - iyMf(t -1),
X

it follows that
OO

W9(t - !) = £c,(« - - l)/j !,
j=0

which implies that
OO

g(x) = 52(-1)JcJvV(^)/j!,
J=O

which is Charlier’s general B series.
By the same reasoning as for the A series Andersson proves that

TiM = O’[(l + t)7M/(t)]1=0,

which leads to the relation

tjk --  fc) 5 0, 1) • ' • 1 J' ■>

where a(j) is found recursively from the formula

Introducing the factorial cumulants into (5.40) and setting t = — V Andersson 
obtains the symbolic expression for the B series

g{x) = exp
OO

J=1 J‘

which had been indicated by Charlier (1909) for the special case of the Poisson 
B series for the binomial.

Finally, Andersson derives the recursion formulas for the c’s in the same form 
as (5.39) but with factorial cumulants instead of ordinary cumulants.

He generalizes the formulas for the B series to forward and central differences 
instead of backward differences.

Andersson (1941) gives a clear account of Gram’s (1879) orthogonal series 
expansion, g(x) — which he proposes to call the Gram series. He 
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points out that the two main examples are the series with the normal and the 
Poisson distributions as leading terms and supplements these by setting /(a?) = 
b(rr), the binomial with parameters (n,p).

We remark that this series had been treated by Bruns (1906b) and Wicksell 
(1935) but only in the form g(x) = 'EcjV:’b(x), which is unsuitable for applica
tions because tables of b(x) were lacking.

Andersson succeeds in finding the orthogonal polynomials with b(x) as weight 
function. He introduces Pj(x) by the equation

b(x)Pj(x) = (-1)jqj A-7 [ô(ar)z^)]

fc=0 ' '
(5.41)

Repeated applications of the relation

qb(x + k)(x + k) = (n — x — k + k)pb{x + k — 1)

give
qkb(x + k)(x + k)^ = (n — x)^pkb(x),

so that

P^x) = V(-l)fcf{")/g7-fe(n-2;)(fc)^-fc)

fc=0 ' '

= 52(-l)J (n~j + k)wpkx^-^ . 
k=o ' '

Using summation by parts he proves the orthogonality and gets
n

P2(P)b(gP) — jln^pJqi .
x—0

The c’s are then easily found from (2.7).
As a further application of the Gram series Andersson (1942) derives the A 

series with the Pearson curves as leading terms: this is a generalization of Gram’s 
two A series and of Romanovsky’s (1924, 1928) series, which will be discussed in 
the next section.

Pearson’s frequency functions are defined as solutions to the differential equa
tion

f'(x)/f(x) = (a + rr)/(50 + &iæ + b2x2),

where the four parameters have to satisfy certain conditions for the solution to 
be a frequency function with finite moments. Andersson sets

/(æ)Pj(r) ex Dj|/(t)(60 + + føz2)-'] (5-42)
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and proves the orthogonality using integration by parts. Choosing the coefficient 
of xJ as unity he finds the norming constant and a recurrence formula for the 
coefficients of Pj(x), from which he obtains the first four rather complicated 
polynomials.

It will be seen that (5.41) and (5.42) are generalizations of Gram’s results for 
the gamma distribution.

He derives a recurrence formula for Pj(x), expressing Pj+2 in terms of Pj+i 
and Pj , and a second order differential equation for Pj(x), and points out that the 
Jacobi, Hermite, Laguerre and Legendre polynomials are special cases of Pj(x). 
These results are also proved by Jackson (1941, pp. 161—165).

Andersson’s three papers are the end of the story. They contain the simplest 
possible derivation of the A and B series and generalize Gram’s results.

6 The contributions of Romanovsky, Jordan, and Steffensen

(1) Romanovsky’s generalization of Pearson’s frequency functions by 
means of the A series, 1924, 1928.

V. I. Romanovsky (1879-1954), Professor of statistics at the University of 
Tashkent, uses (1924) some of Pearson’s frequency functions as leading terms of 
the A series, which he writes in the same form as Gram, whose work he did not 
know.

His main example is the beta distribution

/(a?) = (a+x)Q(6-o;)/3/[(a+ö)Q+^+1B(Q!+l,/?+l)], —a^x^b, a > —1, ß > -1.

Setting
/(x)P7(æ) = £)J[/(x)(a + x)J(6- rr)J], j = 0,1,... ,

denoting the ascending factorial by

(ß + h)k = (/? + h)(/3 + h + 1)... (/3 + fc), and (ß + /z)h-i = 1, 

and using Leibniz’s formula for the differentiation he gets

P= (a + k + l)j(ß + j — k + l)j(a + x)k(b — x^ k .
k=0 '

He proves the orthogonality of the P’s by integration by parts and finds

Pj2(z)/(z)dx = B(Q,ß)jl{a+ß+j+l)2j(a+b)a+f3+2:,+\a)j(ß)j/(a+ß)2j+i

The coefficient Cj is then found from (2.7) and becomes a linear combination of 
the first j moments of g(x).
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Romanovsky proves that if the method of moments is used for determining 
the four parameters of /(rr) then cq = ... = C4 = 0, so the A series becomes

g{x) = f(x)[l + c5P5(x) + c6P6(x) + ...].

Pearson’s Type II distribution

f(x) = (a2 — x2)a/[(2a)2a+1 B(a + 1, a + 1)], —a^x^a, a > —1, 

is a special case of the Type I (beta) distribution and requires no further com
ments.

(2) Ch. Jordan’s orthogonal expansions of frequency functions, 1926, 
1927.

Ch. Jordan (1871 1959), Professor at the University of Technical and Eco
nomical Sciences of Budapest, gives a clear and comprehensive exposition of 
orthogonal expansions of frequency functions in his textbook (1927) on mathe
matical statistics, preceded by a paper (1926) with applications to the binomial 
distribution. Nearly the same material may he found in his books on the calcu
lus of finite differences (1947) and on the history of probability theory (1972),

The Type III (gamma) distribution is

f(x) = (a + x)ae~/3xßa+1/[r(a + l)ea^], x —a, a >—1, ß > 0 .

and leads to

6T) (a + k + l)j/3fc(a + x)k , 

fc=o ' '

which for a = 0 equals Gram’s result (2.11).
Romanovsky remarks that the A series based on the normal distribution, Type 

VII, is well known.
He notes that the application of series involving moments of order five or more 

“is not always desirable” because of the large sampling error of these moments. 
He points out that the gamma distribution with one correction term depends on 
four moments only.

In a supplementary paper (1928) he derives analogous results for the remaining 
Pearson frequency functions and notes the least squares property of the expan
sions, see also Romanovsky (1927). As noted in the previous section Andersson’s 
(1942) proof covers all Romanovsky’s results.

Pearson (1924) comments that an alternative generalization of his system may 
be obtained by adding terms of the third and higher powers of x in the denomi
nator of his differential equation. [It is, however to be expected that this system 
will be more complicated than the A series.] He maintains that for practical 
applications one should not use moments of higher order than four. 
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whose Hungarian editions were published in 1939 and 1956, respectively. Like 
his contemporaries Jordan did not know the works of Gram and Lipps, so his 
results on the B series were considered as new.

The 1927 book begins with a discussion of the mathematical properties of the 
four systems of orthogonal polynomials due to Chebyshev, Legendre, Hermite, 
and Lipps. Referring to Chebyshev and Charlier and using the orthogonality 
Jordan derives the expressions for the coefficients of the normal A series and the 
Poisson B series previously found by Gram and Lipps, respectively.

Let f(x, A) denote the Poisson frequency function with parameter A, f(x, A) = 
0 for x < 0, let D denote differentiation with respect to A and A differencing 
with respect to x. Hence,

Df(x, A) = -A/(z - 1, A).

Jordan (1926; 1927, p. 36) defines the polynomial Gj(x,X) by the relation

D3f(x,X) = /(z, A)Gj(rr, A) = (-I)3 f(x - j, X).

If we, like Lipps and Charlier, introduce backward differences the right side 
becomes

(-1HvV(x,A) = (-l)V(x,A)F/x,A),

see (3.12), so that 
G^x^ç-iyp^x).

Jordan is the first to prove the orthogonality of the G’s with respect to the 
weight function f. We shall give his proof in terms of the P’s and V. Using 
summation by parts,

oo oo

^x— 1 ^X }
X=1X=1

which by iteration gives

oo

(-ir£v’-W-r)
(—l)r for s = r 

0 for s > r .x—r
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Since Pr(x) is a linear combination of (æ), k = 0,1,... , r, it follows that 

oo
Pr(x)Ps(x)f(x) = 0 for s f r .

x=0

Combining the relation

OO / \
(-l)r r JPr(z)/(æ) = i, r = 0,1,..., 

x=0 '

with the fact that

a linear combination of /A (2?), k < r ,

Jordan gets
OO 

(-l)2r(A7ri)EC?W/W = l, 
a;=0

so that OO
= r!A_r.

x=0

The coefficient cr then follows from (2.7), which leads to the same result as 
Lipps’s (3.17). Jordan points out that cr may be written in symbolic form as 
(A — p)r/r!, where /ik has to be replaced by the factorial moment p(fc).

We shall now indicate some of Jordan’s other ideas from the 1927 book. He 
(pp. 235 236) is the first to give a serious discussion of the properties of the three- 
and four-parameter A series considered as frequency functions. Let <73(2?) be the 
three-parameter A series. By investigating the roots of the equation gs(x) — 0 
he finds the conditions for $3(2:) to be non-negative expressed in terms of /12 and 
p.3. He also finds the conditions for unimodality. He indicates that similar results 
hold for (74(2:) and concludes that the applicability of these formulas as frequency 
functions is severely restricted, as later confirmed by Barton and Dennis (1952) 
who did not know Jordan’s work.

He (p. 93) remarks that the binomial cannot be expressed rigorously by means 
of the A series, instead one should use the B series (p. 99).

He (pp. 237 239) mentions that the goodness of fit may be measured by the 
residual sum of squares, using either the relative frequencies or the cumulative 
relative frequencies, but he does not discuss the distribution of these statistics. 
Independently the latter measure was studied in more detail by Cramer (1926b, 
pp. 111-112; 1928, pp. 144-156) and by von Mises (1931, pp. 316-335), who 
named it the cc2 test.

Jordan (p. 275) suggests that log g{x) may be represented by a polynomial, 
which he writes as a linear combination of Chebyshev polynomials; g(P) is thus a 
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C series in the terminology of Charlier (1928). Jordan determines the coefficients 
by the method of least squares.

Besides the method of moments Jordan discusses the method of least squares 
without weights. This leads him (p. 277) to introduce the modified Hermite 
polynomials

-ør(u) = Hr(u)\/ø(M), u — [x — E(x)]/cr , r = 0,1,... ,

which he uses for an orthogonal expansion with coefficients determined by the 
method of least squares. The coefficients are thus linear combinations of

He (p. 279) claims that this series is better than the usual A series because it 
is based on the method of least squares and the influence of large deviations is 
modified by the factor . He (p. 280) makes an analogous modification of 
the B series.

In two notes at the end of his book he proves that the method of moments and 
unweighted least squares give the same expansion for Chebyshev and Legendre 
polynomials. Apart from a remark on the A series (p. 238) he does not realize that 
the method of moments and weighted least squares lead to the same expansion 
for the normal A series and the Poisson B series.

Uspensky (1931) characterizes Jordan’s (1926) B series as “a remarkable series 
capable of representing a given infinite sequence of numbers under rather general 
conditions.” He proves that the coefficients and the series converge if the conver
gence radius for the generating function Hg{x)tx is larger than 2. He writes the 
distribution function as

771 /»OC
^2,g(æ) = (c0/m!) / e~ttmdf+5?(-l)JCj AJ~1/(m+l-j, A), m = 0,1,....

x=0 j=l

He applies this formula to the binomial (n,p) and finds the rapidity of the con
vergence by determining an upper limit for |cj|.

Referring to Jordan (1926), Aitken (1931-32) derives the properties of the 
Lipps polynomials and points out that they satisfy a recurrence relation

Pj+1(x) = Pi(x)Pj(x-l)+(;/A)Pj-i(a;-l), Pi(x) = l-(x/A), j = l,2,..., 

which is analogous to that for the Hermite polynomials. He studies the corre
sponding C series, that is, the expansion of logg(a?) in terms of {Pj(x)}, and 
concludes that it is unsatisfactory because of the large influence of the logarithm 
of the small probabilities.
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(3) Steffensen’s unified derivation of the finite A and B series as prob
ability distributions, 1924, 1930.

Steffensen looks at the problem of series expansion of frequency functions 
from a purely statistical point of view. He (1930) writes: “We are therefore of 
opinion that the labour that has been expended by several authors in examining 
the conditions under which the A-series is ultimately convergent, interesting as 
it is from the point of view of mathematical analysis, has no bearing on the 
question of the statistical applications.” The statistical problem is, he says, to 
fit a frequency function, gm(x) say, containing m parameters to a sample of n 
observations, m < n, and therefore the series has to be finite. Moreover, gm{x) 
should be a probability distribution, that is, it should be non-negative and its 
sum or integral over the whole domain should be unity. He therefore writes the 
series as

m m

5m(æ) = - Ju), 52aJ = 1’ (6.1)
j=o j=o

where f(x) is a probability distribution, cc an arbitrary real number, and the 
constants {a7}, without being necessarily all positive, are chosen such that gm(x) 
is non-negative.

The basic ideas and the solution of the problem for w = 1 are given in the 1924 
paper; in 1930 he derives both the A and B series as special cases of a general 
formula.

Steffensen introduces the moments (in our notation)

Atr = 52^Mm(æ), ^ = 52^/^), 7r = J2jraj, r = 0,1,..., æ æ 1
where yr is defined in analogy with /zr and vr although {a7} is not a probability 
distribution. The corresponding cumulants are denoted by and For 
the continuous case the sums are replaced by integrals.

Steffensen derives a relation between the three moments by inserting

= 52 0 (x ~ j^SU^r~S ’
s=0 ' '

into

Mr = 52 52 ~ '
x 1

which leads to

gr = 52 52 Q
j S \ '

^s^r-s • (6-2)
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The corresponding relation between the cumulants is obtained by multiplying 
the two cumulant generating functions

and

oo oo

3=0

oo oo

j=o

and identifying the coefficients of tr, which on the left side equals

(4 + <Z<)/r!,

and on the right side
y-' Vj Ir-j r-i = Zb 
“ j! (r-jy. r!

according to (6.2). Comparing with the expansion

exp
OO

j=l

oo

= 52^77
3=0

it follows that
n9r = 7 + of . (6-3)

Steffensen develops gm(x) as a linear combination of difference quotients of 
f(x) setting

Vw/(x) = [/(æ) - f(x - w)]/w

(jJ 

Hence,

f(x-j^ = E~^f(x)

= (1 -wvw)V7)

which inserted into (6.1) gives

s44 = E W- <-*?!/(»)
3 = 0 ‘ .7=0

m f—11s
= 52csV®/(o:), where cs = OJ3^), (6.4)

8 = 0



78 Anders Hald MfM 49

7(s) denoting the factorial moment. This is Steffensen’s finite generalized B series 
from which the ordinary B series is obtained for w = 1 and the A series for w —* 0 
since limV®/(a?) = f^s\x). The first term of the series is f(x) since

co = 7(0) = 52 «j = 1 •

To find cs, s = 1,... ,m, suppose that the theoretical or empirical value of k9 
is known and that has been calculated from f(x). From (6.3) we get

= (6.5)

whereafter ys and 7(s) are found by the usual formulas connecting the moments 
and the cumulants. However, for the normal A series and the Poisson B series 
simple expressions for cs in terms of the moments are known.

From the formula
771

>) =
j=s

it follows that
rn—j 

ai = (vj!) 52(_1)s%+s)/s! ’ 
3=0

but the a’s are of secondary importance compared with the c’s.
If /(x) contains k < m parameters, determined by the first k moments, then 

Ks = Ksi s — 1,... ,k, so, according to (6.5), the corresponding values of — 0, 
which leads to 7(s) = 0 and thus C(s\ — 0 for s = 1.,... ,k.

Steffensen (1930) concludes: “There are, however, considerable drawbacks. 
We cannot, as with Pearson’s types, be sure beforehand that negative values 
will not occur; as a matter of fact they often do occur, and this can only be 
ascertained at the end of the calculation. We have not even very good reason 
to expect that by adding another term such negative values may be made to 
disappear. (...) It may finally be observed that the frequency function (28) [our 
(6.4)] often presents several maxima and minima. This may be an advantage if 
the experience also do so; but then, such an experience is often of little value, as 
the presence of maxima and minima is, perhaps, due to the fact that the material 
is not homogeneous, or too small. We are therefore inclined to think that the 
apparent generality of (28) is rather a disadvantage than otherwise, and that 
Pearson’s types are as a rule preferable.”

7 Concluding remarks

Series expansions of frequency functions, which blossomed at the beginning of 
the century, disappeared from common statistical practice in the late 1920s.

The many authors who developed the normal A series believed that the partial 
sum based on the first four moments could be used as an approximation to uni- 
modal skew distributions having contact with the axis at both ends of the range. 
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The justification of this belief was amply demonstrated by the many successful 
fittings of partial sums to empirical distributions by Werner, Bowley, Charlier, 
Edgeworth, and Cramér. However, the four-parameter normal A series had to 
compete with other systems of distributions, in particular the four-parameter 
Pearson system. Edgeworth (1917) remarks that his series covers only moderate
ly nonnormal distributions and therefore has to be supplemented by the method 
of translation to cover nearly the same field as the Pearson system.

Pearson carried out a feud with all other systems. Not being satisfied with 
Edgeworth’s admission of the limitation of series expansions he, in 1922, planned 
what he considered as the definitive blow against the normal A series. Noting 
that the three-parameter gamma distribution and the four-parameter beta distri
bution had been fitted satisfactorily to many empirical distributions he proposed 
to investigate whether the two theoretical distributions could be adequately re
presented by the normal A series. If not, he took this as a sign that the A series 
could not represent the empirical distributions either. He left the demonstration 
of this proposal to J. Henderson (1922-1923).

Henderson carried out his investigation in terms of Pearson’s tetrachoric func
tions defined as

7?(æ) = (-l)J_1(d/dæ)7“M(x)/vT!

= Hj_i(a;)</)(x)/Vjï, .7=0,1,...,

ro (or) being the normal probability integral. As noted by Henderson, an expan
sion in tetrachoric functions is the same as a normal A series when the norming 
factor 1/y/gï is taken into account.

By a suitable change of origin and scale the two densities may be written as 
and .

We shall discuss Henderson’s series expansion of the gamma distribution.
Introducing the standardized variable u — (x — a)/y/a Henderson writes the 

expansion as
oo

^a_1e“a;/r(a;) = + !)! TJ+i(w) • (7-1)
j=o

Multiplying by exp(ut) and integrating he gets the relation between the moment 
generating functions

OO
exp(—ta^)(l — = exp(t2/2) cj^ ■ (7-2)

j=o

Expanding the functions of t into power series it is easy to see that co — 
Ci — C2 = 0, so that the equation becomes

OO \ oo

^2 I = a2 ’
J=3 / j=3

exp (7-3)



80 Anders Hald MfM 49

from which the c’s may be determined. It follows immediately that

c3 = l/3a, c4 = l/4cv3/2 , c5 = l/5o2 .

To determine the following c’s Henderson uses recursion. Logarithmic differenti
ation of (7.2) leads to the equation

OO OO

J=0 j=l

which gives the recursion formula

9+1 = Ü9 +9-2)/[(j + 1)<^], j = 3,4,... .

By means of this formula Henderson calculates cq, ... , cm- It will be seen that 
Cj is a linear combination of

„r-U+D/î, r = 1) j >3.

If Henderson (and Pearson) had read Edgeworth (1905) more carefully they 
would have found that the general solution of their problem is given by (2.19) 
for

«j = O'- l)!a_0_2)/2 , j = 2,3,....

Note that (7.3) is a special case of (2.18).
Integrating (7.1) Henderson gets the A series for the distribution function, 

which he uses in his numerical investigations. He calculates the first 31 partial 
sums for a = 49 and u = (x — 49)/7 = —2.8, —1,0, corresponding to the pro
bability integrals 0.0005850, 0.1577387, 0.5189993, respectively. The deviation 
of the partial sums from the exact value vary about zero in a wavelike fashion 
and “we have as good an approximation at the 5th or 6th terms as at the 15th. 
say, and better than at the 30th.” Furthermore, Henderson remarks that the 
practical value of the expansion “depends on the convergency of the series and 
our experience has shown us that in the most common cases the convergency 
is so slight or non-existent as to render the expansion idle.” He concludes that 
it is impossible to know where to stop to get a good approximation and that 
the series is of no practical utility as a representation of the gamma probability 
integral. He reaches a similar conclusion for the beta distribution. He does not 
discuss under which conditions the series converges or diverges.

It seems that Henderson is looking at the results from the point of view of nu
merical analysis, that is, as if the problem is to obtain an approximation formula 
for tabulating the incomplete gamma and beta functions to four significant figu
res, say, and in this respect the series fails. However, from a statistical point of 
view the relative error of the partial sum should be compared with the standard 
error of the relative frequencies of the empirical distribution in question. For the 
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four-parameter A series the relative error in per cent for the three cases discussed 
is —10.4, —0.983, and —0.000385, respectively, so Henderson’s argument against 
the A series is not so strong as he believed.

We have not found any references to Henderson’s paper so whether it con
tributed to the decline of the statistical applications of the A series is uncertain. 
It is, however, certain that the Pearsonian system won the battle because of its 
simplicity of generation from a single formula, its coverage of distributions of 
widely different shapes, its easy classification of these distributions by means of 
the first four moments, and the goodness of fit obtained in many cases.

In due time also the Pearson system got out of fashion, instead distributions 
were derived from specific assumptions on the random variation in question. This 
development was foreshadowed, in a much more limited context, by Ranke and 
Greiner (1904) in their criticism of the Pearson system and its applicability in 
anthropology. The main problem is, they say, the analysis and comparison of 
several series of observations of the same phenomenon from different populations. 
To make that feasible we need a probabilistic model containing a small number 
of parameters which are simple to calculate. They underline that the parame
ters should have a biological interpretation, which is not the case for Pearson’s 
frequency functions and they therefore characterize his system as purely descrip
tive and empirical. They remark that the interpretation of the parameters of 
the hypergeometric distribution, which is Pearson’s starting point, is lost in the 
differential equation defining his system. Their own solution for anthropological 
data is to use the lognormal distribution, which is generated by a multiplicative 
combination of elementary errors. If the coefficient of variation is small, then 
the normal distribution may be used as an approximation. In case the lognormal 
distribution does not fit the data, they suspect inhomogeneity and recommend 
breaking up the sample into rational subgroups for which the lognormal holds. 
Their conclusion (p. 330) is as follows: “The mean and standard deviation [of 
log a;] give an exhaustive description of the sample, and since the probable error 
of these quantities is known an exact comparison of the samples is possible, and 
our problem is thus completely solved, if we have a reliable criterion for distin
guishing between essential and inessential deviations between the empirical and 
theoretical distributions. This has been provided by Pearson [the y2 test].” They 
add that Pearson’s system has proved very useful outside anthropology. They 
remark that the shape of organs is determined on the one hand by hereditary 
factors and main conditions of living, characterized by the mean, and on the 
other hand by an infinite number of elementary causes each with an infinitely 
small effect leading to the variation, characterized by the standard deviation.

In his reply Pearson (1905b) takes up the whole question of graduation of 
frequency functions by his own system and by other systems as well. By many 
examples he demonstrates “The need for Generalized Frequency Curves, even 
in Anthropological Science.” He points out that Ranke and Greiner have over
looked the facts that many anthropological distributions are symmetrical without 
being normal, and that the lognormal distribution covers only a small part of 
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asymmetrical distributions. He asks for a definition of “homogeneity” and notes 
that “for long series in economics, sociology, zoology, botany and anthropology 
the Gaussian curve over and over again fails. If in all these cases Ranke and 
Greiner assert that the material is heterogeneous they are arguing in a circle. 
The distributions are as continuous and smooth as those which occur in the case 
of the Gaussian curve, and they occur for characters in the same group of indi
viduals which present for other characters the normal distribution.” He admits 
that his own system is empirical, and thus, by implication, that the parameters 
do not have a biological interpretation. Thiele (1903. p. 50) referring to Pearson 
(1895) notes that “Here he [Pearson] makes very interesting efforts to develop 
the refractory binomial functions into a basis for the treatment of skew laws of 
error. But there are evidently no natural links between these functions and the 
biological problems, and the above formulae (31) [the normal A series] will prove 
to be easier and more powerful instruments.”

Examples of fitting partial sums of the Poisson B series to empirical distribu
tions are rather few, see Charlier (1906), Bruns (1906b), Jørgensen (1916), A. 
Fisher (1922), and Aroian (1938).

Applications of the C series are given by Thiele (1903) and Charlier (1928).
Series expansions proved to be a useful tool for developing approximations to 

theoretical distributions with known moments. Simple examples are the approx
imations to the binomial by the Edgeworth series and by the Poisson B series.

The asymptotic properties of the Edgeworth series, its inversion (the Cornish- 
Fisher series), and its generalization are discussed by Wallace (1958), Feller 
(1966), Hill and Davis (1968), and subsequently by many others.

The sampling distribution of test statistics under normality, derived by R. A. 
Fisher in the 1920s, led in many cases to Pearson frequency functions. Several 
authors studied the robustness of these statistics under sampling from the normal 
A series, and the Romanovsky-Andersson formulas for series expansions proved 
useful. For surveys of this topic we refer to Wallace (1958) and Särndal (1972).

A brief history of the Gram-Charlier series is due to Davis (1983), and the his
torical development of approximations to distributions is discussed by Bowman 
and S henton (1982).
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